首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiac natriuretic peptides atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are discoordinately regulated in myocardial inflammation associated with acute allograft rejection in humans and during in vitro exposure of cardiocyte cultures to some proinflammatory cytokines. We used experimental autoimmune myocarditis (EAM) to determine whether the discoordinate regulation of ANF and BNP was specific to the situations above or was generally associated with other types of myocardial inflammation. The dependency of this process to angiotensin signaling was also determined, given that previous work demonstrated beneficial effects of the angiotensin receptor blocker olmesartan in myocarditis. Histopathological changes, plasma and cardiac ANF, BNP, and selected cytokines gene expression as well as plasma cytokine levels using a cytokine array were determined in EAM, angiotensin receptor blocker-treated, and control rats. It was found that EAM specifically increases BNP but not ANF circulating levels, thus mimicking the findings in acute cardiac allograft rejection and the effect of some proinflammatory cytokines on cardiocyte cultures in vitro. Plasma cytokine array and real-time PCR revealed that lipopolysaccharide-induced CXC chemokine, monocyte chemotactic protein-1, and tissue inhibitor of metalloproteinase-1 were increased in plasma and in the myocardium of EAM rats. Olmesartan treatment reversed virtually all neuroendocrine and histopathological cardiac changes induced by EAM, thus providing a mechanistic insight into this phenomenon. It is concluded that the inflammatory process contributes specific cytokines, leading to the disregulation of cardiac ANF and BNP production observed during myocardial inflammation, and that this process is angiotensin receptor 1 dependent.  相似文献   

2.
3.
Determinants of inducible brain natriuretic peptide promoter activity   总被引:1,自引:0,他引:1  
  相似文献   

4.
McGrath MF  de Bold AJ 《Peptides》2005,26(6):933-943
The cardiac natriuretic peptides (NP) atrial natriuretic factor or peptide (ANF or ANP) and brain natriuretic peptide (BNP) are polypeptide hormones synthesized, stored and secreted mainly by cardiac muscle cells (cardiocytes) of the atria of the heart. Both ANF and BNP are co-stored in storage granules referred to as specific atrial granules. The biological properties of NP include modulation of intrinsic renal mechanisms, the sympathetic nervous system, the rennin-angiotensin-aldosterone system (RAAS) and other determinants, of fluid volume, vascular tone and renal function. Studies on the control of baseline and stimulated ANF synthesis and secretion indicate at least two types of regulated secretory processes in atrial cardiocytes: one is stretch-stimulated and pertussis toxin (PTX) sensitive and the other is Gq-mediated and is PTX insensitive. Baseline ANF secretion is also PTX insensitive. In vivo, it is conceivable that the first process mediates stimulated ANF secretion brought about by changes in central venous return and subsequent atrial muscle stretch as observed in acute extracellular fluid volume expansion. The second type of stimulation is brought about by sustained hemodynamic and neuroendocrine stimuli such as those observed in congestive heart failure.  相似文献   

5.
6.
7.
The discovery of the natriuretic properties of atrial muscle extracts pointed to the existence of an endocrine function of the heart that is now known to be mediated by the polypeptide hormones atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). On the basis of such a finding, approximately 27 000 publications to date have described a wide variety of biological properties of the heart hormones as well as their application as therapeutic agents and biomarkers of cardiac disease. Stimulation of secretion of ANF and BNP from the atria is mediated through mechanisms involving G proteins of the G(q) or G(o) types. We showed that the latter type underlies the transduction of muscle stretch into stimulated secretion and that it is more highly abundant in atria than in ventricles. The Gα(o)()-1 subunit appears to play a key role in the biogenesis of atrial granules and in the intracellular targeting of their contents. Protein interaction studies using a yeast two-hybrid approach showed interactions between Gα(o)()-1, proANF, and the intermediate conductance, calcium-activated K(+) channel SK4. Pharmacological inhibition of this channel decreases ANF secretion. Unpublished studies using in vitro knockdowns suggest interdependency in granule protein expression levels. These studies suggest previously unknown mechanisms of intracellular targeting and secretion control of the heart hormones that may find an application in the therapeutic manipulation of circulating ANF and BNP.  相似文献   

8.
We have previously reported a fivefold increase of plasma atrial natriuretic factor (ANF) in patients with congestive heart failure (CHF) compared with normal subjects. However, given the marked increase of ANF under basal conditions, the extent to which ANF secretion can further increase under physiological stress is not been clarified in CHF. We therefore evaluated ANF secretion during ergometric exercise in 11 patients with CHF, with peripheral venous ANF samples obtained at rest and peak exercise. In seven patients, simultaneous peripheral venous and right ventricular ANF samples were obtained to estimate myocardial ANF secretion. Hemodynamic characteristics of exercise included a significant increase of heart rate, mean arterial pressure, and cardiac output (all P < 0.01); reduction of systemic vascular resistance (P < 0.001); and increase of right atrial and pulmonary wedge pressures (P < 0.001). ANF was abnormally elevated at baseline (108 +/- 58 fmol/ml) yet increased further to 183 +/- 86 fmol/ml with exercise (P < 0.003). A step-up of right ventricular ANF, particularly during exercise, was consistent with active myocardial secretion, despite elevated baseline ANF levels.  相似文献   

9.
T T Nguyen  K Babinski  H Ong  A De Lean 《Peptides》1990,11(5):973-978
Chromaffin cells synthesize and secrete two forms of natriuretic peptides which are also found in the heart and in the central nervous system. While atrial tissue predominantly contains atrial natriuretic factor (ANF), brain tissue appears to produce relatively larger amounts of brain natriuretic peptide (BNP) also identified as aldosterone secretion inhibitory factor (ASIF), suggesting tissue-specific differential regulation of these two peptides. This report compares the modulation of the biosynthesis and secretion of ASIF with that of ANF using cultured chromaffin cells as a model system. Cholinergic nicotinic activation and KCl depolarization induce a 5-fold increase of the corelease of ASIF and pro-ASIF in cell culture medium concomitantly with a 3-fold stimulation of ANF and pro-ANF cosecretion. While the combined treatment with phorbol ester and forskolin produces a 2-fold increase in total ANF level, it induces a synergistic 20-fold elevation of total ASIF level. These results indicate that chromaffin cell secretagogues induce the cosecretion of both the precursor and mature forms of ASIF and ANF. The preferential stimulation of ASIF production is revealed by the combined treatment rendering the ASIF to ANF proportion similar to that in brain.  相似文献   

10.
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

11.
12.
Atrial natriuretic factor (ANF) is a 28-amino acid peptide hormone of cardiac origin. It has natriuretic, diuretic and vasorelaxant properties and inhibits several cardiovascular modulators. Because of the possible effects of arginine vasopressin (AVP) on ANF secretion, we have investigated ANF gene expression in Brattleboro rats which are genetically deficient in AVP. Our results indicate that cardiac ANF mRNA and ANF content are higher in Brattleboro rats compared to Long-Evans controls, whereas the plasma levels are similar in both groups. Typical secretory granules containing immunoreactive ANF are present in ventricular cardiocytes of Brattleboro but not of Long-Evans rats. These data suggest that ANF release may be uncoupled from its synthesis in the absence of AVP.  相似文献   

13.
The role of coronary hemodynamics and cardiac beating on atrial natriuretic factor (ANF) release was studied in the isolated Langendorff-perfused rat heart. ANF release was measured by radioimmunoassay. When the coronary flow rate was changed, ANF release decreased or increased in a flow-dependent manner. When the perfusion pressure was changed, ANF release also increased or decreased, respectively, with concomitant changes in coronary flow rate. Furthermore, perfusion with 50 mM potassium chloride showed immediate cardiac arrest and a decrease of ANF release to an undetectable level with a significant decrease in coronary flow. However, low but readily detectable amounts of ANF were released when coronary flow rate was maintained. These results may suggest that coronary hemodynamics and cardiac beating could be factors modulating ANF secretion from the atrium.  相似文献   

14.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that regulate blood pressure and volume, and exert their biological actions via the natriuretic peptide receptor-A gene (Npr1). Mice lacking Npr1 (Npr(-/-)) have marked cardiac hypertrophy and fibrosis disproportionate to their increased blood pressure. This study examined the relationships between ANP and BNP gene expression, immunoreactivity and fibrosis in cardiac tissue, circulating ANP levels, and ANP and BNP mRNA during embryogenesis in Npr1(-/-) mice. Disruption of the Npr1 signaling pathway resulted in augmented ANP and BNP gene and ANP protein expression in the cardiac ventricles, most pronounced for ANP mRNA in females [414 +/- 57 in Npr1(-/-) ng/mg and 124 +/- 25 ng/mg in wild-type (WT) by Taqman assay, P < 0.001]. This increased expression was highly correlated to the degree of cardiac hypertrophy and was localized to the left ventricle (LV) inner free wall and to areas of ventricular fibrosis. In contrast, plasma ANP was significantly greater than WT in male but not female Npr1(-/-) mice. Increased ANP and BNP gene expression was observed in Npr1(-/-) embryos from 16 days of gestation. Our study suggests that cardiac ventricular expression of ANP and BNP is more closely associated with local hypertrophy and fibrosis than either systemic blood pressure or circulating ANP levels.  相似文献   

15.
To evaluate to what extent opioid secretion in exercise induces the release of atrial natriuretic factor (ANF), six healthy male volunteers who were trained subjects, were submitted to two maximal exercise tests with and without (control) opioid receptor blockade by Naltrexone. Blood samples were drawn before (rest) and after exercise (post-exercise) in order to measure human ANF (alpha h ANF), beta-endorphin, plasma aldosterone concentration (PAC) plasma renin activity (PRA) and adreno-cortico trophic hormone (ATCH) by radio-immunological methods. Expired gas was collected during exercise to measure oxygen consumption. On average, the same maximal oxygen consumption (VO2max) during exercise was reached by all subjects with and without treatment. Plasma ANF level at rest slightly decreased after administration of Naltrexone; the response to physical exercise was significantly reduced by Naltrexone. There was no statistical difference between plasma levels of beta-endorphin, PRA and ACTH at rest nor in the post-exercise situation under the influence of Naltrexone. The PAC increased significantly at rest after Naltrexone administration but there was no statistical difference between both values after exercise. These data demonstrate that: (1) ANF secretion during exercise is influenced by the level of beta-endorphin in the plasma; (2) the possible inhibitory role of ANF on aldosterone secretion during exercise is probably over-ruled by the increase in plasma ACTH and PRA.  相似文献   

16.
17.
In order to elucidate biosynthesis and secretion of natriuretic peptides in the early phase of acute myocardial infarction (AMI), we measured the plasma level of brain natriuretic peptide (BNP), a novel cardiac hormone secreted from the ventricle, in patients with AMI and compared with that of atrial natriuretic peptide (ANP). The plasma level of BNP increased rapidly (within hours from the onset of AMI) and markedly (greater than 100 times the normal level) as compared to that of ANP. The plasma ANP level correlated with pulmonary capillary wedge pressure (PCWP), whereas the plasma BNP level did not correlate with PCWP but highly correlated inversely with cardiac index. These results indicate that BNP is secreted from the heart much more acutely and prominently than ANP in the early phase of AMI, in association with left ventricular dysfunction.  相似文献   

18.
19.
The atrial natriuretic factor (ANF) gene is activated in cardiac myocytes by Ras and its effector Raf. However, MEK, the best-characterized Raf substrate, cannot efficiently activate ANF suggesting that Raf uses a MEK-independent pathway to activate ANF. By manipulating MEK and Raf activities so that they are equally effective at activating ERK, we now demonstrate that Raf activates at least two signaling pathways in cardiac myocytes that regulate the ANF promoter; the MEK-->ERK pathway inhibits ANF gene expression while a Raf-induced, MEK-independent pathway activates expression. This mechanism may provide increased ability to regulate ANF expression in response to hypertrophic stimuli.  相似文献   

20.

Aims

Atrial natriuretic petide (ANP), brain natriuretic peptide (BNP) and endothelin-1 (ET-1) may reflect the severity of right ventricular dysfunction (RVD) in patients with pulmonary embolism (PE). The exact nature and source of BNP, ANP and ET-1 expression and secretion following PE has not previously been studied.

Methods and Results

Polystyrene microparticles were injected to induce PE in rats. Gene expression of BNP, ANP and ET-1 were determined in the 4 cardiac chambers by quantitative real time polymerase chain reaction (QPCR). Plasma levels of ANP, BNP, ET-1 and cardiac troponin I (TNI) were measured in plasma. PE dose-dependently increased gene expression of ANP and BNP in the right ventricle (RV) and increased gene expression of ANP in the right atrium (RA). In contrast PE dose-dependently decreased BNP gene expression in both the left ventricle (LV) and the left atrium (LA). Plasma levels of BNP, TNI and ET-1 levels dose-dependently increased with the degree of PE.

Conclusion

We found a close correlation between PE degree and gene-expression of ANP, and BNP in the cardiac chambers with a selective increase in the right chambers of the heart.The present data supports the idea of natriuretic peptides as valuable biomarkers of RVD in PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号