首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

2.
3.
The limited proteolysis of human recombinant TNF- by trypsin yields two stable products resulting from cleavage after Arg6 and Arg44. In solution these two products remain associated together in a trimer with a Stokes' radius slightly greater than the radius of intact TNF- and, therefore, could not be separated from each other under nondenaturing conditions. This limited digest retains at least 20% of the activity of the original TNF- sample, and has a tertiary structure that is similar to that of the native protein by circular dichroism. On the other hand, incorrectly folded, inactive TNF- undergoes extensive digestion following similar treatment with trypsin. These results indicate that the active form of TNF- has a tight core structure which is maintained afterN-terminal cleavage and removal.  相似文献   

4.
To understand the structure-function relationship of human tumor necrosis factor- (TNF-), mutational analysis was carried out on the lower regions (regions 1–6) of the molecule. The muteins were prepared as a soluble form by using a chaperonin co-expression system and the cytotoxic activities of the purified muteins were evaluated on TNF-sensitive murine fibrosarcoma L929 cells. Three regions (regions 1, 2 & 4) were found where mutations significantly influenced the bioactivity. In region 1 (residues 1–10), the number of deleted residues and the positioning of positive charges are important to achieve a maximum activity and in region 4 (residues 84–88), introduction of charged residues in one of the positions 86–88 significantly increased the cytotoxic activity. On the other hand, any mutation introduced in region 2 (residues 37–41) had a deleterious effect. The present study provides a structural basis for the design of highly potent TNF- as a therapeutic agent.Revisions requested 18 October 2004; Revisions received 22 November 2004  相似文献   

5.
The mechanism of TNF-α-induced insulin resistance has remained unresolved with evidence for down-regulation of insulin effector targets effects or blockade of proximal as well as distal insulin signaling events depending upon the dose, time, and cell type examined. To address this issue we examined the acute actions of TNF-α in differentiated 3T3L1 adipocytes. Acute (5-15 min) treatment with 20 ng/ml (~0.8 nm) TNF-α had no significant effect on IRS1-associated phosphatidylinositol 3-kinase. In contrast, TNF-α increased insulin-stimulated cyclin-dependent kinase-5 (CDK5) phosphorylation on tyrosine residue 15 through an Erk-dependent pathway and up-regulated the expression of the CDK5 regulator protein p35. In parallel, TNF-α stimulation also resulted in the phosphorylation and GTP loading of the Rho family GTP-binding protein, TC10α. TNF-α enhanced the depolymerization of cortical F-actin and inhibited insulin-stimulated glucose transporter-4 (GLUT4) translocation. Treatment with the MEK inhibitor, PD98059, blocked the TNF-α-induced increase in CDK5 phosphorylation and the depolymerization of cortical F-actin. Conversely, siRNA-mediated knockdown of CDK5 or treatment with the MEK inhibitor restored the impaired insulin-stimulated GLUT4 translocation induced by TNF-α. Furthermore, siRNA-mediated knockdown of p44/42 Erk also rescued the TNF-α inhibition of insulin-stimulated GLUT4 translocation. Together, these data demonstrate that TNF-α-mediated insulin resistance of glucose uptake can occur through a MEK/Erk-dependent activation of CDK5.  相似文献   

6.
We previously reported that necrosis occurs predominantly in porcine renal tubular LLC-PK1 cells, when the cells were exposed transiently to a high concentration of cisplatin. Moreover, we demonstrated that generation of reactive oxygen species and subsequent production of tumor necrosis factor-α (TNF-α) through phosphorylation of p38 MAPK are implicated in the pathogenesis of cisplatin-induced renal cell injury. However, some TUNEL-positive cells appeared in renal proximal tubules of rats after systemic injection of cisplatin, suggesting an involvement of apoptosis. In the present study, we found in LLC-PK1 cells that both apoptosis and necrosis were elicited when the cells were exposed to 200 μM cisplatin for 1 h followed by incubation for 24 h in the presence of 20 μM cisplatin. The cisplatin-induced necrosis was largely attenuated by the antioxidant N-acetylcysteine, while apoptosis was prevented by the specific inhibitors for caspases-2, -8, and -3 and a p53 inhibitor pifithrin-α but not by the p38 MAPK inhibitor SB203580. On the other hand, SB203580 attenuated the cisplatin-induced increase in TNF-α production. These findings suggest that p53-mediated activations of caspases-2, -8 and -3 play a key role in cisplatin-induced renal cell apoptosis, while oxidative stress-induced TNF-α synthesis via p38 MAPK phosphorylation contributed to the necrosis.  相似文献   

7.
Pan LL  Liu XH  Gong QH  Wu D  Zhu YZ 《PloS one》2011,6(5):e19766

Background

Hydrogen sulfide (H2S), the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H2S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction.

Methodology and Principal Findings

Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS.

Significance

H2S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.  相似文献   

8.
Isoflavone genistein may have beneficial effects on vascular function, but the mechanism is unclear. Here, we investigated whether genistein protects vascular endothelial cells against apoptosis induced by tumor necrosis factor-α. We show that genistein significantly inhibited TNF-α-induced apoptosis in human aortic endothelial cells as determined by caspase-3 activation, 7-amino actinomycin D staining, in situ apoptotic cell detection and DNA laddering. The anti-apoptotic effect of genistein was associated with an enhanced expression of Bcl-2 protein and its promoter activity. Inhibition of extracellular signal-regulated kinase 1/2, protein kinase A, or estrogen receptors had no effect on the cytoprotective effect of genistein. However, inhibition of p38 mitogen-activated protein kinase (p38) completely abolished this genistein effect. Accordingly, stimulation of HAECs with genistein resulted in rapid activation of p38β, but not p38α. These findings provide the evidence that genistein acts as a survival factor for vascular ECs to protect cells against apoptosis via activation of p38β. Preservation of the functional integrity of the endothelial monolayer may represent an important mechanism by which genistein exerts its vasculoprotective effect.  相似文献   

9.
Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100?µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice.

Highlights: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.  相似文献   

10.
Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.  相似文献   

11.
12.
Liu H  Li M  Wang P  Wang F 《Cytokine》2011,56(3):581-588
Proinflammatory cytokines play vital roles in intestinal barrier function disruption. YC-1 has been reported to have potent anti-inflammatory properties, and to be a potential agent for sepsis treatment. Here, we investigated the protective effect of YC-1 against intestinal barrier dysfunction caused by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). To assess the protective effect of YC-1 on intestinal barrier function, Caco-2 monolayers treated with simultaneous IFN-γ and TNF-α were used to measure transepithelial electrical resistance (TER) and paracellular permeability. To determine the mechanisms involved in the protective action of YC-1, expression and distribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers challenged with simultaneous IFN-γ and TNF-α were analyzed by Western blot and immunofluorescence, respectively. Expressions of phosphorylated myosin light chain (MLC), MLC kinase (MLCK) and hypoxia-inducible factor-1α (HIF-1α) were analyzed by Western blot in IFN-γ and TNF-α-treated Caco-2 monolayers. It was found that YC-1 attenuated barrier dysfunction caused by IFN-γ and TNF-α, and also prevented IFN-γ and TNF-α-induced morphological redistribution of tight junction proteins ZO-1 and occludin in Caco-2 monolayers. In addition, YC-1 suppressed IFN-γ and TNF-α-induced upregulation of MLC phosphorylation and MLCK protein expression. Furthermore, enhanced expression of HIF-1α in Caco-2 monolayers treated with IFN-γ and TNF-α was also suppressed by YC-1. It is suggested that YC-1, by downregulating MLCK expression, attenuates intestinal barrier dysfunction induced by IFN-γ and TNF-α, in which HIF-1α inhibition, at least in part, might by involved. YC-1 may be a potential agent for treatment of intestinal barrier disruption in inflammation.  相似文献   

13.
Liao CH  Lin FY  Wu YN  Chiang HS 《Steroids》2012,77(7):756-764
Endothelial cells contribute to the function and integrity of the vascular wall, and a functional aberration may lead to atherogenesis. There is increasing evidence on the atheroprotective role of androgens. Therefore, we studied the effect of the androgens-testosterone and dihydrotestosterone-and estradiol on human coronary artery endothelial cell (HCAEC) function. We found by MTT assay that testosterone is not cytotoxic and enhances HCAEC proliferation. The effect of testosterone (10-50 nM), dihydrotestosterone (5-50 nM), and estradiol (0.1-0.4 nM) on the adhesion of tumor necrosis factor-α (TNF-α)-stimulated HCAECs was determined at different time points (12-96 h) by assessing their binding with human monocytic THP-1 cells. In addition, the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), was determined by ELISA and Western blot analysis. Both testosterone and dihydrotestosterone attenuated cell adhesion and the expression of VCAM-1 and ICAM-1 in a dose- and time-dependent manner. Furthermore, androgen treatment for a longer duration inhibited cell migration, as demonstrated by wound-healing assay, and promoted tube formation on a Matrigel. Western blot analysis demonstrated that the expression of phosphorylated endothelial nitric oxide synthase (eNOS) increased, whereas that of inducible nitric oxide synthase (iNOS) decreased following the 96-h steroid treatment of TNF-α-stimulated HCAECs. Our findings suggest that androgens modulate endothelial cell functions by suppressing the inflammatory process and enhancing wound-healing and regenerative angiogenesis, possibly through an androgen receptor (AR)-dependent mechanism.  相似文献   

14.
The cytokine tumor necrosis factor (TNF) induces caspase-dependent cell death in a subset of tumor cells. In this report, we show a novel suppressive effect of calpeptin, a calpain inhibitor, on TNF-induced cell death and accumulation of p53 in L929 mouse fibrosarcoma. Exposure to 10 ng/ml TNF induced cell death in >50% of L929 cells within 12 h and stimulated accumulation of p53 (8-fold). Preincubation of cells with calpeptin blocked both TNF-induced cell death and accumulation of p53 as examined with Western blot. TNF-induced accumulation of p53 was in part contributed by increase of p53 mRNA level (2.2-fold) in a calpeptin-insensitive manner. Interestingly, other calpain inhibitors tested did not show these effects like calpeptin and TNF treatment did not increase apparent calpain activity in L929 cells, suggesting that calpeptin may have another function besides targeting calpain. Expression of dominant negative mutant p53Val135 reduced the incidence of TNF-mediated cell death. Taken together, our findings suggest that TNF induces calpeptin-dependent, but calpain-independent accumulation of p53 protein as a necessary step leading to death in L929 cells.  相似文献   

15.
Tooth cementum is a bone-like mineralized tissue and serves as a microbial barrier against invasion and destruction. Cementum is also responsible for tooth stability and defending pulp from outside stimuli, which is formed by cementoblasts. Although it is crucial for periodontal and periapical diseases, the mechanisms underlying the pathophysiological changes of cementoblasts and their inflammatory responses remain unclear. MiR-181b is found to modulate vascular inflammation and endotoxin tolerance. In this study, miR-181b-5p was downregulated in tumor necrosis factor-α (TNF-α)-stimulated cementoblasts, whereas proinflammatory molecules increased. The mouse periapical lesions have similar results, which imitate an inflammatory environment for cementoblasts in vivo. The bioinformatics analysis and dual luciferase reporter assay suggested that miR-181b-5p targeted interleukin-6 (IL-6). Overexpressing miR-181b-5p negatively regulated IL-6 and proinflammatory chemokine. Western blot analysis and luciferase activity reporter assay verified that miR-181b-5p weakened the NF-κB activity. Hence, miR-181b-5p moderated proinflammatory chemokine production by targeting IL-6 in cementoblasts and NF-κB signaling pathway was involved. Furthermore, miR-181b-5p promoted cementoblast apoptosis, which may enhance the resolution of inflammation. Overall, our data revealed that miR-181b-5p was a negative regulator of TNF-α-induced inflammatory responses in cementoblasts.  相似文献   

16.
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid with beneficial effects in obesity and insulin resistance. High levels of proinflammatory cytokine tumour necrosis factor-α (TNF-α) in obesity promote lipolysis in adipocytes, leading to the development of insulin resistance. Thus, the aims of the present study were to analyze the potential antilipolytic properties of EPA on cytokine-induced lipolysis and to investigate the possible mechanisms involved. The EPA effects on basal and TNF-α-induced lipolysis were determined in both primary rat and 3T3-L1 adipocytes. Treatment of primary rat adipocytes with EPA (100 and 200 μM) significantly decreased basal glycerol release (P<.01) and prevented cytokine-induced lipolysis in a dose-dependent manner (P<.001). Moreover, EPA decreased TNF-α-induced activation of nuclear factor-κB and extracellular-related kinase 1/2 phosphorylation. In addition, the antilipolytic action of EPA was stimulated by the AMP-kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-b-d-ribofuranoside and blocked by the AMPK-inhibitor compound C. Moreover, we found that EPA stimulated hormone-sensitive lipase (HSL) phosphorylation on serine-565, which further supports the involvement of AMPK in EPA's antilipolytic actions. Eicosapentaenoic acid treatment (24 h), alone and in the presence of TNF-α,? also decreased adipose triglyceride lipase (ATGL) protein content in cultured adipocytes. However, oral supplementation with EPA for 35 days was able to partially reverse the down-regulation of HSL and ATGL messenger RNA observed in retroperitoneal adipose tissue of high-fat-diet-fed rats. These findings suggest that EPA inhibits proinflammatory cytokine-induced lipolysis in adipocytes. This effect might contribute to explain the insulin-sensitizing properties of EPA.  相似文献   

17.
Sensitivities to recombinant human tumor necrosis factor- (TNF-) and chemotherapeutic agents (cisplatin, peplomycin, methotrexate) were evaluated in 20 tumor cells of head and neck squamous cell carcinomas, using a dye uptake method. Also, numbers of TNF receptors of these tumor cells were measured by Scatchard plot analysis. There was no relationship between the number of TNF- receptors and the sensitivity to TNF-. Furthermore, there was no correlation between the sensitivity to TNF- and that to chemotherapeutic drugs, nor between the sensitivity to TNF- and the clinical response to chemotherapy including of cisplatin and peplomycin. The sensitivity to TNF- was higher in poorly differentiated carcinomas than in well differentiated ones.Abbreviations BSA Bovine serum albumin - CDDP Cisplatin - 5-Fu 5-fluorouracil - IC50 Inhibition concentration 50 - MTX Methotrexate - PLM Peplomycin - TNF- Tumor necrosis factor-  相似文献   

18.
Intraperitoneal (ip) administration of the lowest dose of Escherichia coli lipopolysaccharide (LPS) that elicits a maximal febrile response in non-pregnant rats when studied in a neutral ambient temperature (EC100—160 μg/kg) produces a transient “regulated” hypothermia in near-term pregnant rats. The current experiments have been carried out to determine the role of tumor necrosis factor-α (TNF-α) in mediating this hypothermic response. Chronically instrumented non-pregnant and pregnant rats were housed and studied in a neutral ambient temperature and allocated to one of two experimental series depending upon whether they received ip recombinant rat TNF-α (rrTNF-α) in doses ranging from 0.1 to 1000 μg/kg or they received an antibody to tumor necrosis receptor I (TNF R1 Ab) – which neutralizes its cell surface mediated activity – before receiving an EC100 dose of E. coli LPS. Intraperitoneal rrTNF-α elicited fevers in non-pregnant but not in near-term pregnant rats. In near-term pregnant rats, transient hypothermias predominated following ip rrTNF-α and occurred at doses ranging from 10 to 1000 μg / kg. As well, ip administration of TNF RI Ab eliminated the transient hypothermia following ip administration of an EC100 dose of E. coli LPS in near-term pregnant rats. These data taken together provide evidence that TNF-α plays an important role in mediating the transient regulated hypothermia that occurs in near-term pregnant rats following ip administration of an EC100 dose of E. coli LPS.  相似文献   

19.
20.
In this study, we investigated the mechanisms underlying the anti-inflammatory effects of honokiol in tumor necrosis factor (TNF)-α-stimulated rheumatoid arthritis synovial fibroblasts (RASFs). RASFs pre-treated with honokiol (0-20 μM) were stimulated with TNF-α (20 ng/ml). The levels of prostaglandin E2 (PGE2), nitric oxide (NO), soluble intercellular adhesion molecule-1 (sICAM-1), transforming growth factor-β1 (TGF-β1), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in supernatants were determined by enzyme-linked immunosorbent assay (ELISA) and Griess assay. In addition, protein expression levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated Akt, nuclear factor kappa B (NFκB), and extracellular signal-regulated kinase (ERK)1/2 were determined by western blot. The expression of NFκB-p65 was assessed by immunocytochemical analysis. TNF-α treatment significantly up-regulated the levels of PGE2, NO, sICAM-1, TGF-β1, MCP-1, and MIP-1α in the supernatants of RASFs, increased the protein expression of COX-2, iNOS, and induced phosphorylation of Akt, IκB-α, NFκB, and ERK1/2 in RASFs. TNF-α-induced expression of these molecules was inhibited in a dose-dependent manner by pre-treatment with honokiol. The inhibitory effect of honokiol on NFκB-p65 activity was also confirmed by immunocytochemical analysis. In conclusion, honokiol is a potential inhibitor of TNF-α-induced expression of inflammatory factors in RASFs, which holds promise as a potential anti-inflammatory drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号