共查询到20条相似文献,搜索用时 15 毫秒
1.
Jun-Zheng Liu Shu-En Zhang Feilin Nie Ying Yang Yan-Bo Tang Wenwen Yin Jin-Ying Tian Fei Ye Zhiyan Xiao 《Bioorganic & medicinal chemistry letters》2013,23(23):6217-6222
An integrated molecular design strategy combining pharmacophore recognition and scaffold hopping was exploited to discover novel PTP1B inhibitors based on the known PTP1B inhibitor Ertiprotafib. A composite pharmacophore model was proposed from the interaction mode of Ertiprotafib, and 21 diverse molecules from five distinct structural classes were designed and synthesized accordingly. New compounds with considerable inhibition against PTP1B were identified from each series, and the most active compound 3a showed IC50 value of 1.3 μmol L?1 against human recombinant PTP1B. Docking study indicated that the new inhibitors assumed binding modes similar to that of Ertiprotafib. 相似文献
2.
Werner J. Geldenhuys Altaf S. Darvesh Max O. Funk Cornelis J. Van der Schyf Richard T. Carroll 《Bioorganic & medicinal chemistry letters》2010,20(17):5295-5298
Parkinson’s disease is a severe debilitating neurodegenerative disorder. Recently, it was shown that the peroxisome proliferating-activator receptor-γ agonist pioglitazone protected mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity due to its ability to inhibit monoamine oxidase B (MAO-B). Docking studies were initiated to investigate pioglitazone’s interactions within the substrate cavity of MAO-B. Modeling studies indicated that the thiazolidinedione (TZD) moiety was a likely candidate for its specificity to MAO-B. To explore this potential novel MAO-B scaffold, we performed a structure-based virtual screen to identify additional MAO-B inhibitors. Our search identified eight novel compounds containing the TZD-moiety that allowed for a limited study to identify structural requirements for binding to MAO-B. Inhibition assays identified two TZDs (A6355 and L136662) which were found to inhibit recombinant human MAO-B with IC50 values of 82 and 195 nM, respectively. 相似文献
3.
Rimoldi JM Puppali SG Isin E Bissel P Khalil A Castagnoli N 《Bioorganic & medicinal chemistry》2005,13(20):5808-5813
Cyclic five- and six-membered tertiary allylamines constitute a unique class of monoamine oxidase substrates that undergo a net two-electron alpha-carbon oxidation to form the cyclic, conjugated eniminium metabolites. The corresponding saturated pyrrolidinyl and piperidinyl systems are not substrates for this flavoenzyme system. In an attempt to evaluate possible contributions that pi-orbital stabilization of the putative alpha-carbon radical intermediates may play in the catalytic pathway, we have examined the substrate properties of 3-methyl-6-phenyl-3-aza-bicyclo[4.1.0]heptane, the 3,4-cyclopropyl analog of the selective monoamine oxidase B substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results, which document the first reported example of a saturated, cyclic tertiary amine with monoamine oxidase substrate properties, are consistent with alpha-carbon radical stabilization as a contributing factor in the catalytic pathway. 相似文献
4.
Rita Meleddu Simona Distinto Roberto Cirilli Stefano Alcaro Matilde Yanez Maria Luisa Sanna 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):264-270
3,5-Diaryl-4,5-dihydroisoxazoles were synthesized and evaluated as monoamine oxidase (MAO) enzyme inhibitors and iron chelators. All compounds exhibited selective inhibitory activity towards the B isoform of MAO in the nanomolar concentration range. The best performing compound was preliminarily evaluated for its ability to bind iron II and III cations, indicating that neither iron II nor iron III is coordinated. The best compounds racemic mixtures were separated and single enantiomers inhibitory activity evaluated. Furthermore, none of the synthesised compounds exhibited activity towards MAO A. Overall, these data support our hypothesis that 3,5-diaryl-4,5-dihydroisoxazoles are promising scaffolds for the design of neuroprotective agents. 相似文献
5.
Monoamine oxidase B (MAO-B) functions in the deamination of monoamines, including dopamine and norepinephrine. The search for MAO-B inhibitors increased following the discovery that the enzyme may be responsible for generating neurotoxins from various endogenous or exogenous compounds. Computational screening methods aid in the search for new inhibitors, but validation studies for specific software packages and receptors are necessary for effective application of these methods. In this study, DOCK 6.0.0 was used to dock a series of inhibitors to MAO-B. Included were studies of re-docking ligands into MAO-B crystal structures, after which a set of 30 compounds with known inhibition constants for MAO-B were docked, including 15 strong inhibitors and 15 weak inhibitors. Good agreement was observed between the top experimental inhibitors and the top ranked docking results, and key interactions between the ligands and receptor were identified. 相似文献
6.
Cyclin-dependent kinases (CDKs) are promising drug targets for various human diseases, especially for cancers. Scaffold hopping strategy was applied on CAN508, a known selective CDK9 inhibitor, and a series of pyrazolo[3,4-b]pyridine compounds were synthesized and evaluated in vitro as CDK2 and CDK9 inhibitors. Most compounds exhibited moderate to potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems. Among them, compound 2e showed IC50 values of 0.36?μM for CDK2 and 1.8?μM for CDK9, respectively. Notably, the scaffold alteration seems to cause a shift in the selectivity profile of the inhibitors. In contrast to CAN508, compound 2k demonstrated remarkable selectivity toward CDK2 (265-fold over CDK9). Docking studies on compound 2k provided hints for further design of more potent and selective CDK2/CDK9 inhibitors. 相似文献
7.
Hwangseo Park Minghua Li Jungeun Choi Hyeongjin Cho Seung Wook Ham 《Bioorganic & medicinal chemistry letters》2009,19(15):4372-4375
Discovery of Cdc25B phosphatase inhibitors has been actively pursued with the aim to develop anticancer agents. We have been able to identify eight novel Cdc25B inhibitors by means of a computer-aided drug design protocol involving the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Structural features relevant to the interactions of the newly identified inhibitors with the active-site residues of Cdc25B are also discussed in detail. 相似文献
8.
Sonia Martínez González Ana Isabel Hernández Rosa María Álvarez Antonio Rodríguez Francisco Ramos-Lima James R. Bischoff María Isabel Albarrán Antonio Cebriá Elena Hernández-Encinas Jennifer García-Arocha David Cebrián Carmen Blanco-Aparicio Joaquín Pastor 《Bioorganic & medicinal chemistry letters》2017,27(21):4794-4799
A scaffold hopping strategy, including intellectual property availability assessment, was successfully applied for the discovery of novel PI3K inhibitors. Compounds were designed based on the chemical structure of the lead compound ETP-46321, a potent PI3K inhibitor, previously reported by our group. The new generated compounds showed good in vitro potency and selectivity, proved to inhibit potently the phosphorylation of AKTSer473 in cells and demonstrated to be orally bioavailable, thus becoming potential back-up candidates for ETP-46321. 相似文献
9.
Topai A Breccia P Minissi F Padova A Marini S Cerbara I 《Bioorganic & medicinal chemistry》2012,20(7):2323-2337
Among matrix metalloproteinases (MMPs), gelatinases MMP-2 (gelatinase A) and MMP-9 (gelatinase B) play a key role in a number of physiological processes such as tissue repair and fibrosis. Many evidences point out their involvement in a series of pathological events, such as arthritis, multiple sclerosis, cardiovascular diseases, inflammatory processes and tumor progression by degradation of the extracellular matrix. To date, the identification of non-specific MMP inhibitors has made difficult the selective targeting of gelatinases. In this work we report the identification, design and synthesis of new gelatinase inhibitors with appropriate drug-like properties and good profile in terms of affinity and selectivity. By a detailed in silico protocol and innovative and versatile solid phase approaches, a series of 4-thiazolydinyl-N-hydroxycarboxyamide derivatives were identified. In particular, compounds 9a and 10a showed a potent inhibitory activity against gelatinase B and good selectivity over the other MMP considered in this study. The identified compounds could represent novel potential candidates as therapeutic agents. 相似文献
10.
Hassan SY Khattab SN Bekhit AA Amer A 《Bioorganic & medicinal chemistry letters》2006,16(6):1753-1756
A new series of 3-benzyl-2-substituted quinoxalines have been synthesized by means of microwave enhancement of nucleophilic substitution reaction involving the corresponding 2-chloroquinoxaline analogs and substituted amines or hydrazine. The synthesized compounds were evaluated for their monoamine oxidase A and B inhibitory activity by determination of their IC(50). All the newly synthesized compounds showed more selective inhibitory activity toward MAO-A than MAO-B. In addition, the acute toxicity of the synthesized compounds was determined. This work may be a fruitful matrix of the synthesis of a new series of novel MAO-A inhibitors with good safety margins. 相似文献
11.
12.
S M Yentis 《BMJ (Clinical research ed.)》1989,298(6674):671-672
13.
Shiyu Li Xiao Lv Kai Cheng Yongbing Tian Xufeng Huang Haiyan Kong Yajun Duan Jihong Han Chenzhong Liao Zhouling Xie 《Bioorganic & medicinal chemistry letters》2019,29(9):1090-1093
Inhibition of MAO-B has been an effective strategy for the treatment of Parkinson’s disease. To find more potent and selective MAO-B inhibitors with novel chemical scaffold, we designed and synthesized a series of new 2,3-dihydro-1H-inden-1-amine derivatives on basis of our previous study. Furthermore, the corresponding structure-activity relationship (SAR) of these compounds is detailedly discussed. Compounds L4 (IC50?=?0.11?μM), L8 (IC50?=?0.18?μM), L16 (IC50?=?0.27?μM) and L17 (IC50?=?0.48?μM) showed similar MAO-B inhibitory activity as Selegiline. Moreover, L4, L16 and L17 also exhibited comparable selectivity with Selegiline, indicating that L4, L16 and L17 could be promising selective MAO-B inhibitors for further study. 相似文献
14.
Margassery LM Kennedy J O'Gara F Dobson AD Morrissey JP 《Journal of microbiological methods》2012,88(1):63-66
Calcineurin is a eukaryotic protein phosphatase important for many signalling and developmental processes in cells. Inhibitors of this enzyme are used clinically and there is interest in identifying novel inhibitors for therapeutic applications. This report describes a high-throughput assay that can be used to screen natural or chemical libraries of compounds to identify new calcineurin inhibitors. The microtitre plate assay is based on a yeast reporter strain and was validated with known inhibitors and tested in a pilot screen of bacterial extracts. 相似文献
15.
Mietha M. Van der Walt Gisella Terre’Blanche Anél Petzer Jacobus P. Petzer 《Bioorganic & medicinal chemistry letters》2012,22(21):6632-6635
Monoamine oxidase (MAO) plays an essential role in the catabolism of neurotransmitter amines. The two isoforms of this enzyme, MAO-A and -B, are considered to be drug targets for the therapy of depression and neurodegenerative diseases, respectively. Based on a recent report that the phthalimide moiety may be a useful scaffold for the design of potent MAO-B inhibitors, the present study examines a series of 5-sulfanylphthalimide analogues as potential inhibitors of both human MAO isoforms. The results document that 5-sulfanylphthalimides are highly potent and selective MAO-B inhibitors with all of the examined compounds possessing IC50 values in the nanomolar range. The most potent inhibitor, 5-(benzylsulfanyl)phthalimide, exhibits an IC50 value of 0.0045 μM for the inhibition of MAO-B with a 427-fold selectivity for MAO-B compared to MAO-A. We conclude that 5-sulfanylphthalimides represent an interesting class of MAO-B inhibitors and may serve as lead compounds for the design of antiparkinsonian therapy. 相似文献
16.
Susan Lühr Marcelo Vilches-Herrera Angélica Fierro Rona R. Ramsay Dale E. Edmondson Miguel Reyes-Parada Bruce K. Cassels Patricio Iturriaga-Vásquez 《Bioorganic & medicinal chemistry》2010,18(4):1388-1395
2-Arylthiomorpholine and 2-arylthiomorpholin-5-one derivatives, designed as rigid and/or non-basic phenylethylamine analogues, were evaluated as rat and human monoamine oxidase inhibitors. Molecular docking provided insight into the binding mode of these inhibitors and rationalized their different potencies. Making the phenylethylamine scaffold rigid by fixing the amine chain in an extended six-membered ring conformation increased MAO-B (but not MAO-A) inhibitory activity relative to the more flexible α-methylated derivative. The presence of a basic nitrogen atom is not a prerequisite in either MAO-A or MAO-B. The best Ki values were in the 10?8 M range, with selectivities towards human MAO-B exceeding 2000-fold. 相似文献
17.
Mietha M. Van der Walt Gisella Terre’Blanche Anna C.U. Lourens Anél Petzer Jacobus P. Petzer 《Bioorganic & medicinal chemistry letters》2012,22(24):7367-7370
It has recently been reported that nitrile containing compounds frequently act as potent monoamine oxidase B (MAO-B) inhibitors. Modelling studies suggest that this high potency inhibition may rely, at least in part, on polar interactions between nitrile functional groups and polar moieties within the MAO-B substrate cavity. In an attempt to identify potent and selective inhibitors of MAO-B and to contribute to the known structure–activity relationships of MAO inhibition by nitrile containing compounds, the present study examined the MAO inhibitory properties of series of novel sulfanylphthalonitriles and sulfanylbenzonitriles. The results document that the evaluated compounds are potent and selective MAO-B inhibitors with most homologues possessing IC50 values in the nanomolar range. In general, the sulfanylphthalonitriles exhibited higher binding affinities for MAO-B than the corresponding sulfanylbenzonitrile homologues. Among the compounds evaluated, 4-[(4-bromobenzyl)sulfanyl]phthalonitrile is a particularly promising inhibitor since it displayed a high degree of selectivity (8720-fold) for MAO-B over MAO-A, and potent MAO-B inhibition (IC50 = 0.025 μM). Based on these observations, this structure may serve as a lead for the development of therapies for neurodegenerative disorders such as Parkinson’s disease. 相似文献
18.
19.
Yulong Xu Xicheng Yang Yiyi Chen Hao Chen Huijiao Sun Wei Li Qiong Xie Linqian Yu Liming Shao 《Bioorganic & medicinal chemistry letters》2018,28(12):2148-2152
A series of structurally novel proteasome inhibitors 1–12 have been developed based rational topology-based scaffold hopping of bortezomib. Among these novel proteasome inhibitors, compound 10 represents an important advance due to the comparable proteasome-inhibitory activity (IC50?=?9.7?nM) to bortezomib (IC50?=?8.3?nM), the remarkably higher BEI and SEI values and the effectiveness in metabolic stability. Therefore, compound 10 provides an excellent lead suitable for further optimization. 相似文献