首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 16 毫秒
1.
Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.  相似文献   

2.
Cytoglobin (Cygb) is an emerging tumor suppressor gene silenced by promoter hypermethylation in many human tumors. So far, the precise molecular mechanism underlying its tumor suppressive function remains poorly understood. Here, we identified Cygb as a genotoxic stress-responsive hemoprotein upregulated upon sensing cellular DNA damage. Our studies demonstrated that Cygb physically associates with and stabilizes p53, a key cellular DNA damage signaling factor. We provide evidence that Cygb extends the half-life of p53 by blocking its ubiquitination and subsequent degradation. We show that, upon DNA damage, cells overexpressing Cygb displayed proliferation defect by rapid accumulation of p53 and its target gene p21, while Cygb knockdown cells failed to efficiently arrest in G1 phase in response to DNA insult. These results suggest a possible involvement of Cygb in mediating cellular response to DNA damage and thereby contributing in the maintenance of genomic integrity. Our study thus presents a novel insight into the mechanistic role of Cygb in tumor suppression.  相似文献   

3.
Floodwater aedine mosquito eggs were recovered from soil samples taken from grassland depressions, called pans, in the Orange Free State Province of South Africa. A sedge, Mariscus congestus (Vahl) C.B.Cl., was a useful indicator of Aedes (Ochlerotatus) juppi McIntosh oviposition areas. No transovarial transmission of virus was demonstrated by Ae.juppi females reared from the eggs and allowed to feed shortly after eclosion on hamsters. No virus was recovered from 557 pools of 5425 adult Ae.juppi that were collected as eggs and reared to the adult stage in the laboratory. Rift Valley fever virus replicated to high titres in experimentally infected Ae.juppi females, but horizontal transmission experiments proved inconclusive.  相似文献   

4.
The molecular network that controls responses to genotoxic stress is centered at p53 and Mdm2. Recent findings have shown this network to be more complex than previously envisioned. Using a notation specifically designed for circuit diagram-like representations of bioregulatory networks, we have prepared an updated molecular interaction map of the immediate connections of p53 and Mdm2, which are described as logic elements of the network. We use the map as the basis for a comprehensive review of current concepts of signal processing by these logic elements (an interactive version of the maps-eMIMs can be examined at ). We also used molecular interaction maps to propose a p53 Off-On switch in response to DNA damage.  相似文献   

5.
DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR‐dependent checkpoint response, followed by a later DDR‐independent, but p27Kip1‐dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA‐PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two‐step response was DDR‐dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA‐PKcs resulted in cell‐cycle re‐entry despite the increased levels of p27Kip1 at all time points analyzed. We further investigated the regulation of p27Kip1 protein levels in the particular setting. Our results showed that the protein status of p27Kip1 is mainly determined by p38‐MAPK, whereas the role of SKP2 is less significant in the doxoroubicin‐treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy‐induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.  相似文献   

6.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

7.
The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease.  相似文献   

8.
Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells.  相似文献   

9.
Xeroderma pigmentosum variant (XP-V) cells lack the damage-specific DNA polymerase eta and have normal excision repair but show defective DNA replication after UV irradiation. Previous studies using cells transformed with SV40 or HPV16 (E6/E7) suggested that the S-phase response to UV damage is altered in XP-V cells with non-functional p53. To investigate the role of p53 directly we targeted p53 in normal and XP-V fibroblasts using short hairpin RNA. The shRNA reduced expression of p53, and the downstream cell cycle effector p21, in control and UV irradiated cells. Cells accumulated in late S phase after UV, but after down-regulation of p53 they accumulated earlier in S. Cells in which p53 was inhibited showed ongoing genomic instability at the replication fork. Cells exhibited high levels of UV induced S-phase gammaH2Ax phosphorylation representative of exposed single strand regions of DNA and foci of Mre11/Rad50/Nbs1 representative of double strand breaks. Cells also showed increased variability of genomic copy numbers after long-term inhibition of p53. Inhibition of p53 expression dominated the DNA damage response. Comparison with earlier results indicates that in virally transformed cells cellular targets other than p53 play important roles in the UV DNA damage response.  相似文献   

10.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

11.
Cells with aberrations in chromosomal ploidy are normally removed by apoptosis. However, aneuploid neurons have been shown to remain functional and active both in the cortex and in the retina. Lim1 horizontal progenitor cells in the chicken retina have a heterogenic final cell cycle, producing some cells that enter S-phase without proceeding into M-phase. The cells become heteroploid but do not undergo developmental cell death. This prompted us to investigate if the final cell cycle of these cells is under the regulation of an active DNA damage response. Our results show that the DNA damage response pathway, including γ-H2AX and Rad51 foci, is not triggered during any phase of the different final cell cycles of horizontal progenitor cells. However, chemically inducing DNA adducts or double-strand breaks in Lim1 horizontal progenitor cells activated the DNA damage response pathway, showing that the cells are capable of a functional response to DNA damage. Moreover, manipulation of the DNA damage response pathway during the final cell cycle using inhibitors of ATM/ATR, Chk1/2, and p38MAPK, neither induced apoptosis nor mitosis in the Lim1 horizontal progenitor cells. We conclude that the DNA damage response pathway is functional in the Lim1 horizontal progenitor cells, but that it is not directly involved in the regulation of the final cell cycle that gives rise to the heteroploid horizontal cell population.  相似文献   

12.
13.
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/PolηKD cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.  相似文献   

14.
Zhang Y  Zhou J  Lim CU 《Cell research》2006,16(1):45-54
The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.  相似文献   

15.
The pBR322 plasmid containing the sequence encoding β-lactamase, the enzyme conferring resistance to ampicillin, was encapsulated in liposomes of different phospholipid composition and incubated with synchronized cells. In mitotic cells as compared to cells synchronized in G1, twice as many exogeneous DNA molecules were found associated with the cell nuclear DNA, when fluid, neutral liposomes were used. These liposomes are taken up by the cells mainly via endocytosis. When fluid, negatively charged liposomes were used as carriers about the same number of exogeneous DNA molecules were found associated with the nuclear DNA both in mitotic and in G1-synchronized cells. The efficiency for gene transfer of liposomes entering the cells by different mechanisms was further studied and expressed both by the fraction of the radioactive plasmid associated with the nuclear DNA and by the level of the β-lactamase activity detected in the transfected cells. It appears that liposomes entering the cells mainly via an energy-dependent mechanism are more efficient for this type of DNA transfer.  相似文献   

16.
17.
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号