首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sickle cell disease vasculopathy: a state of nitric oxide resistance   总被引:5,自引:0,他引:5  
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.  相似文献   

2.
Secondary pulmonary hypertension (PH) is emerging as one of the leading causes of mortality and morbidity in patients with hemolytic anemias such as sickle cell disease (SCD) and thalassemia. Impaired nitric oxide (NO) bioavailability represents the central feature of endothelial dysfunction, and is a major factor in the pathophysiology of PH. Inactivation of NO correlates with hemolytic rate and is associated with the erythrocyte release of cell-free hemoglobin, which consumes NO directly, and the simultaneous release of the arginine-metabolizing enzyme arginase, which limits bioavailability of the NO synthase substrate arginine during the process of intravascular hemolysis. Rapid consumption of NO is accelerated by oxygen radicals that exists in both SCD and thalassemia. A dysregulation of arginine metabolism contributes to endothelial dysfunction and PH in SCD, and is strongly associated with prospective patient mortality. The central mechanism responsible for this metabolic disorder is enhanced arginine turnover, occurring secondary to enhanced plasma arginase activity. This is consistent with a growing appreciation of the role of excessive arginase activity in human diseases, including asthma and pulmonary arterial hypertension. New treatments aimed at improving arginine and NO bioavailability through arginase inhibition, suppression of hemolytic rate, oral arginine supplementation, or use of NO donors represent potential therapeutic strategies for this common pulmonary complication of hemolytic disorders.  相似文献   

3.
Endothelial dysfunction and impaired nitric oxide bioavailability have been implicated in the pathogenesis of sickle cell anemia. Nitric oxide is a diatomic gas with a role in vascular homeostasis. Hemoglobin polymerization resulting from the HbS mutation produces erythrocyte deformation and hemolysis. Free hemoglobin, released into plasma by hemolysis scavenges on nitric oxide, and leads to reduced nitric oxide bioavailability. Pulmonary hypertension is a known consequence of sickle cell anemia. It occurs in 30–40% of patients with sickle cell anemia, and is associated with increased mortality. Several studies have implicated intravascular hemolysis, and impaired nitric oxide bioavailability in the pathogenesis of pulmonary hypertension. In this review, we summarize the mechanisms of altered nitric oxide bioavailability in sickle cell anemia and its possible role in the pathogenesis of pulmonary hypertension. J. Cell. Physiol. 224: 620–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
In sickle cell disease, nitric oxide (NO) depletion by cell-free plasma hemoglobin and/or oxygen radicals is associated with arginine deficiency, impaired NO bioavailability, and chronic oxidative stress. In transgenic-knockout sickle (BERK) mice that express exclusively human alpha- and beta(S)-globins, reduced NO bioavailability is associated with induction of non-NO vasodilator enzyme, cyclooxygenase (COX)-2, and impaired NO-mediated vascular reactivity. We hypothesized that enhanced NO bioavailability in sickle mice will abate activity of non-NO vasodilators, improve vascular reactivity, decrease hemolysis, and reduce oxidative stress. Arginine treatment of BERK mice (5% arginine in mouse chow for 15 days) significantly reduced expression of non-NO vasodilators COX-2 and heme oxygenase-1. The decreased COX-2 expression resulted in reduced prostaglandin E(2) (PGE(2)) levels. The reduced expression of non-NO vasodilators was associated with significantly decreased arteriolar dilation and markedly improved NO-mediated vascular reactivity. Arginine markedly decreased hemolysis and oxidative stress and enhanced NO bioavailability. Importantly, arteriolar diameter response to a NO donor (sodium nitroprusside) was strongly correlated with hemolytic rate (and nitrotyrosine formation), suggesting that the improved microvascular function was a response to reduced hemolysis. These results provide a strong rationale for therapeutic use of arginine in sickle cell disease and other hemolytic diseases.  相似文献   

5.
Cell-free hemoglobin (Hb) exposure may be a pathogenic mediator in the development of pulmonary arterial hypertension (PAH), and when combined with chronic hypoxia the potential for exacerbation of PAH and vascular remodeling is likely more pronounced. We hypothesized that Hb may contribute to hypoxia-driven PAH collectively as a prooxidant, inflammatory, and nitric oxide (NO) scavenger. Using programmable micropump technology, we exposed male Sprague-Dawley rats housed under room air or hypoxia to 12 or 30 mg per day Hb for 3, 5, and 7 wk. Blood pressure, cardiac output, right ventricular hypertrophy, and indexes of pulmonary vascular remodeling were evaluated. Additionally, markers of oxidative stress, NO bioavailability and inflammation were determined. Hb increased pulmonary arterial (PA) pressure, pulmonary vessel wall stiffening, and right heart hypertrophy with temporal and dose dependence in both room air and hypoxic cohorts. Hb induced a modest increase in plasma oxidative stress markers (malondialdehyde and 4-hydroxynonenal), no change in NO bioavailability, and increased lung ICAM protein expression. Treatment with the antioxidant Tempol attenuated Hb-induced pulmonary arterial wall thickening, but not PA pressures or ICAM expression. Chronic exposure to low plasma Hb concentrations (range = 3-10 μM) lasting up to 7 wk in rodents induces pulmonary vascular disease via inflammation and to a lesser extent by Hb-mediated oxidation. Tempol demonstrated a modest effect on the attenuation of Hb-induced pulmonary vascular disease. NO bioavailability was found to be of minimal importance in this model.  相似文献   

6.
Intravascular hemoglobin limits the amount of endothelial-derived nitric oxide (NO) available for vasodilation. Cell-free hemoglobin scavenges NO more efficiently than red blood cell-encapsulated hemoglobin. Hemolysis has recently been suggested to contribute to endothelial dysfunction based on a mechanism of NO scavenging by cell-free hemoglobin. Although experimental evidence for this phenomenon has been presented, support from a theoretical approach has, until now, been missing. Indeed, due to the low amounts of cell-free hemoglobin present in these pathological conditions, the role of cell-free hemoglobin scavenging of NO in disease has been questioned. In this study, we model the effects of cell-free hemoglobin on NO bioavailability, focusing on conditions that closely mimic those under known pathological conditions. We find that as little as 1 microM cell-free intraluminal hemoglobin (heme concentration) can significantly reduce NO bioavailability. In addition, extravasation of hemoglobin out of the lumen has an even greater effect. We also find that low hematocrit associated with anemia increases NO bioavailability but also leads to increased susceptibility to NO scavenging by cell-free hemoglobin. These results support the paradigm that cell-free hemoglobin released into plasma during intravascular hemolysis in human disease contributes to the experimentally observed reduction in NO bioavailability and endothelial dysfunction.  相似文献   

7.

Background

Pulmonary hypertension and left ventricular diastolic dysfunction are complications of sickle cell disease. Pulmonary hypertension is associated with hemolysis and hypoxia, but other unidentified factors are likely involved in pathogenesis as well.

Design and Methods

Plasma concentrations of three angiogenic markers (fibroblast growth factor, platelet derived growth factor–BB [PDGF-BB], vascular endothelial growth factor [VEGF]) and seven inflammatory markers implicated in pulmonary hypertension in other settings were determined by Bio-Plex suspension array in 237 children and adolescents with sickle cell disease at steady state and 43 controls. Tricuspid regurgitation velocity (which reflects systolic pulmonary artery pressure), mitral valve E/Edti ratio (which reflects left ventricular diastolic dysfunction), and a hemolytic component derived from four markers of hemolysis and hemoglobin oxygen saturation were also determined.

Results

Plasma concentrations of interleukin-8, interleukin-10 and VEGF were elevated in the patients with sickle cell disease compared to controls (P≤0.003). By logistic regression, greater values for PDGF-BB (P = 0.009), interleukin-6 (P = 0.019) and the hemolytic component (P = 0.026) were independently associated with increased odds of elevated tricuspid regurgitation velocity while higher VEGF concentrations were associated with decreased odds (P = 0.005) among the patients with sickle cell disease. These findings, which are consistent with reports that PDGF-BB stimulates and VEGF inhibits vascular smooth muscle cell proliferation, did not apply to E/Etdi.

Conclusions

Circulating concentrations of angiogenic and pro-Inflammatory markers are altered in sickle cell disease children and adolescents with elevated tricuspid regurgitation velocity, a subgroup that may be at risk for developing worsening pulmonary hypertension. Further studies to understand the molecular changes in these children are indicated.  相似文献   

8.
Encapsulation of hemoglobin (Hb) within red blood cells (RBCs) preserves nitric oxide (NO) bioactivity. With encapsulation, millimolar concentrations of Hb quench only a fraction of NO bioactivity, whereas mere micromolar concentrations of cell-free Hb completely quench NO bioactivity. A submembrane cytoskeletal barrier has been hypothesized to account for the lowered quenching of NO bioactivity. In order to substantiate this hypothesis, here, the underlying submembrane cytoskeletal barrier was physically reduced and the rate of NO entry into the modified RBC measured. The submembrane cytoskeletal barrier of normal and depleted RBCs was characterized using atomic force microscopy and the lipid to protein ratio measured. The reduction in the submembrane cytoskeletal barrier resulted in an increase in the rate of NO entry. We suggest that the underlying submembrane cytoskeleton may be a key component of RBC mediated regulation of NO bioavailability.  相似文献   

9.
A critical element in the ability of endothelial NO to function in the vasculature is preventing its reaction with erythrocytic Hb (haemoglobin). Emerging concepts suggest that the biophysical and rheological properties of the red blood cell are important in meeting this criterion. It has been recognized for some time that cell-free Hb may react with endothelial NO and that this may underlie the problems with Hb-based blood substitutes. More recent data extend these concepts to haemolytic diseases, including sickle cell disease, and have also identified novel therapeutic strategies to prevent interactions of cell-free Hb with NO. In this overview we have hypothesized that production of high concentrations of NO can overcome the diffusional barriers presented by the red cell and result in formation of S-nitrosohaemoglobin. By doing so, it is hypothesized that Hb may mediate the vasodilatory potential of NO and contribute to the hypotensive responses observed in acute inflammatory diseases, including sepsis.  相似文献   

10.
Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO(3)(-)). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO(2)(-)) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 muM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.  相似文献   

11.
Experimental evidence has shown that nitrite anion plays a key role in one of the proposed mechanisms for hypoxic vasodilation, in which the erythrocyte acts as a NO generator and deoxygenated hemoglobin in pre-capillary arterioles reduces nitrite to NO, which contributes to vascular smooth muscle relaxation. However, because of the complex reactions among nitrite, hemoglobin, and the NO that is formed, the amount of NO delivered by this mechanism under various conditions has not been quantified experimentally. Furthermore, paracrine NO is scavenged by cell-free hemoglobin, as shown by studies of diseases characterized by extensive hemolysis (e.g., sickle cell disease) and the administration of hemoglobin-based oxygen carriers. Taking into consideration the free access of cell-free hemoglobin to the vascular wall and its ability to act as a nitrite reductase, we have now examined the hypothesis that in hypoxia this cell-free hemoglobin could serve as an additional endocrine source of NO. In this study, we constructed a multicellular model to characterize the amount of NO delivered by the reaction of nitrite with both intraerythrocytic and cell-free hemoglobin, while intentionally neglecting all other possible sources of NO in the vasculature. We also examined the roles of hemoglobin molecules in each compartment as nitrite reductases and NO scavengers using the model. Our calculations show that: (1) approximately 0.04pM NO from erythrocytes could reach the smooth muscle if free diffusion were the sole export mechanism; however, this value could rise to approximately 43pM with a membrane-associated mechanism that facilitated NO release from erythrocytes; the results also strongly depend on the erythrocyte membrane permeability to NO; (2) despite the closer proximity of cell-free hemoglobin to the smooth muscle, cell-free hemoglobin reaction with nitrite generates approximately 0.02pM of free NO that can reach the vascular wall, because of a strong self-capture effect. However, it is worth noting that this value is in the same range as erythrocytic hemoglobin-generated NO that is able to diffuse freely out of the cell, despite the tremendous difference in hemoglobin concentration in both cases (microM hemoglobin in plasma vs. mM in erythrocyte); (3) intraerythrocytic hemoglobin encapsulated by a NO-resistant membrane is the major source of NO from nitrite reduction, and cell-free hemoglobin is a significant scavenger of both paracrine and endocrine NO.  相似文献   

12.
Nitric oxide (NO) acts as a smooth muscle relaxation factor and plays a crucial role in maintaining vascular homeostasis. NO is scavenged rapidly by hemoglobin (Hb). However, under normal physiological conditions, the encapsulation of Hb inside red blood cells (RBCs) significantly retards NO scavenging, permitting NO to reach the smooth muscle. The rate-limiting factors (diffusion of NO to the RBC surface, through the RBC membrane or inside of the RBC) responsible for this retardation have been the subject of much debate. Knowing the relative contribution of each of these factors is important for several reasons including optimization of the development of blood substitutes where Hb is contained within phospholipid vesicles. We have thus performed experiments of NO uptake by erythrocytes and microparticles derived from erythrocytes and conducted simulations of these data as well as that of others. We have included extracellular diffusion (that is, diffusion of the NO to the membrane) and membrane permeability, in addition to intracellular diffusion of NO, in our computational models. We find that all these mechanisms may modulate NO uptake by membrane-encapsulated Hb and that extracellular diffusion is the main rate-limiting factor for phospholipid vesicles and erythrocytes. In the case of red cell microparticles, we find a major role for membrane permeability. These results are consistent with prior studies indicating that extracellular diffusion of several gas ligands is also rate-limiting for erythrocytes, with some contribution of a low membrane permeability.  相似文献   

13.
Nitric oxide (NO) plays an important role in autocrine and paracrine manner in numerous physiological processes, including regulation of blood pressure and blood flow, platelet aggregation, and leukocyte adhesion. In vascular wall, most of the bioavailable NO is believed to derive from endothelial cell NO synthase (eNOS). Recently, neuronal NOS (nNOS) has been identified as a source of NO in the vicinity of microvessels and has been shown to participate in vascular function. Thus NO can be produced and transported to the vascular smooth muscle cells from 1). endothelial cells and 2). perivascular nerve fibers, mast cells, and other nNOS-containing sources. In this study, a mathematical model of NO diffusion-reaction in a cylindrical arteriolar segment was formulated. The model quantifies the relative contribution of these NO sources and the smooth muscle availability of NO in a tissue containing an arteriolar blood vessel. The results indicate that a source of NO derived through nNOS in the perivascular region can be a significant contributor to smooth muscle NO. Predicted smooth muscle NO concentrations are as high as 430 nM, which is consistent with reported experimental measurements ( approximately 400 nM). In addition, we used the model to analyze the smooth muscle NO availability in 1). eNOS and nNOS knockout experiments, 2). the presence of myoglobin, and 3). the presence of cell-free Hb, e.g., Hb-based oxygen carriers. The results show that NO release by nNOS would significantly affect available smooth muscle NO. Further experimental and theoretical studies are required to account for distribution of NOS isoforms and determine NO availability in vasculatures of different tissues.  相似文献   

14.
Nitric oxide (NO) plays a fundamental role in maintaining normal vasomotor tone. Recent data implicate a critical function for hemoglobin and the erythrocyte in regulating the activity of NO in the vascular compartment. Intravascular hemolysis releases hemoglobin from the red blood cell into plasma (cell-free plasma hemoglobin), which is then able to scavenge endothelium-derived NO 600-fold faster than erythrocytic hemoglobin, thereby disrupting NO homeostasis. This may lead to vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression (ET-1), and end-organ injury, thus suggesting a novel mechanism of disease for hereditary and acquired hemolytic conditions such as sickle cell disease and cardiopulmonary bypass. Furthermore, therapy with NO gas inhalation or infusion of sodium nitrite during hemolysis may attenuate this disruption in vasomotor balance by oxidizing plasma cell-free hemoglobin, thereby preventing the consumption of endogenous NO and the associated pathophysiological changes. In addition to providing an NO scavenging role in the physiological regulation of NO-dependent vasodilation, hemoglobin and the erythrocyte may deliver NO as the hemoglobin deoxygenates. While this process has previously been ascribed to S-nitrosated hemoglobin, recent data from our laboratories suggest that deoxygenated hemoglobin reduces nitrite to NO and vasodilates the human circulation along the physiological oxygen gradient. This newly described role of hemoglobin as a nitrite reductase is discussed in the context of blood flow regulation, oxygen sensing, and nitrite-based therapeutics.  相似文献   

15.
Release of hemoglobin from the erythrocyte during intravascular hemolysis contributes to the pathology of a variety of diseased states. This effect is partially due to the enhanced ability of cell-free plasma hemoglobin, which is primarily found in the ferrous, oxygenated state, to scavenge nitric oxide. Oxidation of the cell-free hemoglobin to methemoglobin, which does not effectively scavenge nitric oxide, using inhaled nitric oxide has been shown to be effective in limiting pulmonary and systemic vasoconstriction. However, the ferric heme species may be reduced back to ferrous hemoglobin in plasma and has the potential to drive injurious redox chemistry. We propose that compounds that selectively convert cell-free hemoglobin to ferric, and ideally iron-nitrosylated heme species that do not actively scavenge nitric oxide, would effectively treat intravascular hemolysis. We show here that nitroxyl generated by Angeli's salt (sodium alpha-oxyhyponitrite, Na2N2O3) preferentially reacts with cell-free hemoglobin compared to that encapsulated in the red blood cell under physiologically relevant conditions. Nitroxyl oxidizes oxygenated ferrous hemoglobin to methemoglobin and can convert the methemoglobin to a more stable, less toxic species, iron-nitrosyl hemoglobin. These results support the notion that Angeli's salt or a similar compound could be used to effectively treat conditions associated with intravascular hemolysis.  相似文献   

16.
Kar S  Kavdia M 《PloS one》2012,7(6):e38912
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O(2) (?-)) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O(2)(?-) and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O(2)(?-) and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O(2)(?-) and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ~0.6 fold, O(2)(?-) increased ~27 fold and peroxynitrite increased ~30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O(2)(?-) and peroxynitrite concentration in the lumen. The increased O(2) (?-) and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O(2)(?-) in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.  相似文献   

17.
A method is described for simultaneous estimation of zinc and copper in erythrocytes by hemolysis and flame aspiration atomic absorption spectrophotometry. Red blood cells (RBC) were also analyzed by the commonly used nitric acid digestion method for comparison. The difference in the results of zinc analyses of fifteen RBC samples by the two techniques was 0.5 ± 0.8 (mean ± SD) μg Zn/g hemoglobin indicating that these methods yield essentially similar results. Because of the low concentration of copper in RBC, results obtained by the acid digestion method were unreliable since nitric acid and undissolved particles of digested RBC in the acid extract increased instrumental noise to an unacceptable level. Average concentrations of zinc and copper estimated in RBC of 25 normal subjects by the present described technique (hemolysate method) were 43.9 and 2.0 μg/g Hb, respectively. No sex-related differences in RBC zinc or copper concentrations were found. The hemolysate method is simpler and faster to perform than the more commonly used nitric acid digestion method.  相似文献   

18.
Redox-dependent impairment of vascular function in sickle cell disease   总被引:2,自引:1,他引:1  
The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.  相似文献   

19.
The role of nitric oxide in cardiovascular diseases   总被引:18,自引:0,他引:18  
Nitric oxide (NO) is a gaseous lipophilic free radical cellular messenger generated by three distinct isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the protection against the onset and progression of cardiovascular disease. Cardiovascular disease is associated with a number of different disorders including hypercholesterolaemia, hypertension and diabetes. The underlying pathology for most cardiovascular diseases is atherosclerosis, which is in turn associated with endothelial dysfunctional. The cardioprotective roles of NO include regulation of blood pressure and vascular tone, inhibition of platelet aggregation and leukocyte adhesion, and prevention smooth muscle cell proliferation. Reduced bioavailability of NO is thought to be one of the central factors common to cardiovascular disease, although it is unclear whether this is a cause of, or result of, endothelial dysfunction. Disturbances in NO bioavailability leads to a loss of the cardio protective actions and in some case may even increase disease progression. In this chapter the cellular and biochemical mechanisms leading to reduced NO bioavailability are discussed and evidence for the prevalence of these mechanisms in cardiovascular disease evaluated.  相似文献   

20.
The role of Hemoglobin (Hb) on nitric oxide (NO) biology has received much attention. Until recently, the reaction between erythrocytic Hb and NO was generally considered in the context of mechanisms that safely detoxify NO. However, recent insights suggest that properties associated with the red blood cell limit NO-Hb interactions under physiological conditions, and provide some resolution to the question of how NO functions in the presence of blood. Furthermore, Hb-dependent mechanisms that preserve, not destroy NO bioactivity in vivo have also been proposed. The emerging picture suggests that the interplay between NO and erythrocytic Hb is important in regulating the functions of both these molecules in vivo. However, Hb-dependent scavenging and loss of NO function is significant when this heme protein is present outside the red blood cell. This can occur during hemolysis or administration of Hb-based blood substitutes. Scavenging of NO is a significant problem that limits the use of Hb-based blood substitutes in the clinic, and development of Hb molecules that do not efficiently react with NO remains an important area of investigation. In this article, the reactions between NO and erythrocytic Hb or cell-free Hb are described and the effects on NO and Hb function in vivo and development of blood substitutes discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号