首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human blood monocytes cultured in the presence of 1,25(OH)2D3 developed enhanced competence for secretion of H2O2 relative to cells suspended in media. This effect was maximal at a concentration of 10(-8) M 1,25(OH)2D3. After 3 days of incubation, monocyte-derived macrophages (MDM) exposed to 1,25(OH)2D3 demonstrated competence for secretion of H2O2 equivalent to cells exposed to recombinant IFN-gamma. Both IFN-gamma and 1,25(OH)2D3 offset decay of this function among cells in culture after 7 days. Simultaneous exposure of cells to 1,25(OH)2D3 and IFN-gamma did not activate competence for H2O2 secretion more than either agent alone. 24,25(OH)2D3 and 25(OH)2D3 activated MDM but at higher concentration than required for 1,25(OH)2D3. Progesterone did not affect H2O2 production. Incubation of MDM with a monoclonal antibody directed against IFN-gamma inhibited activation induced by lymphokine, and to a lesser extent by cells activated with IFN-gamma; this antibody had an insignificant effect on cells treated with 1,25(OH)2D3. These results suggest that 1,25(OH)2D3 exerts a receptor-mediated effect on monocyte function that results in cellular activation as manifested by enhanced competence for secretion of H2O2. It is possible that smaller concentrations of 1,25(OH)2D3 present in serum are permissive for macrophage activation, or that monocytic phagocytes are exposed to high concentrations of vitamin D metabolites under some clinical circumstances.  相似文献   

2.
WEHI-3B D- cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D- cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARalpha and RXRalpha, was measured. No VDR was detected in untreated WEHI-3B D- cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARalpha and RXRalpha were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D- cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1, 25-(OH)2D3.  相似文献   

3.
The levels of class II major histocompatibility complex (MHC) antigens (la antigens) on cells of a cultured B lymphoma line (WEHI-279) were significantly increased after 24 hr incubation with medium conditioned by concanavalin A-stimulated mouse or rat spleen cells, or by an azobenzenearsonate- (ABA) specific T cell clone that had been stimulated with ABA-coupled spleen cells or concanavalin A. The levels and properties of the la-inducing activity correlated with those of interferon-gamma (IFN-gamma) measured by inhibition of virus plaque formation. Both the la-inducing activity and the IFN-gamma from the T cell clone had an apparent m.w. of 40,000 determined by gel filtration, were sensitive to treatment with trypsin or exposure to pH 2, but were stable to heat (56 degrees C, 1 hr). The induction of la antigens on WEHI-279 cells was dose-dependent, and the maximum response occurred at a concentration corresponding to 1 to 2 U/ml of antiviral activity. This T cell-derived IFN-gamma-like molecule also increased the expression of cell surface la antigens on another B cell line (WEHI-231), and cell lines of macrophage (J774) and myeloid (WEHI-3B and WEHI-265) origin. Furthermore, in all cases the levels of class I MHC (H-2K or H-2D) antigens were also increased. Similar patterns of induction of Ia and H-2 antigens were obtained with supernatants containing IFN-gamma produced by a monkey cell line (COS) that had been transfected with a plasmid bearing the cloned murine IFN-gamma gene. This activity was sensitive to pH 2 and was not present in the supernatant from COS cells that were not transfected with the murine IFN-gamma gene. These results established that IFN-gamma is the T cell-derived molecule that induces the enhanced expression of Ia and H-2 antigens on B cells and macrophages. A major physiologic role of IFN-gamma may be to regulate immune function through the enhanced expression of MHC antigens.  相似文献   

4.
Cytosol prepared in 0.3 M KCl from pituitary GH3 cells, but not from AtT-20 cells contains a receptor-like macromolecule that binds 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) with specificity and high affinity (Kd = 2.9 x 10(-10) M). The GH3 cytosolic binding component sediments at 3.3 S in high-salt sucrose gradients and adsorbs to DNA-cellulose; its elution profile from DNA-cellulose and other biochemical properties are indistinguishable from those of classical 1,25(OH)2D3 hormone receptors. The presence of the 1,25(OH)2D3 receptor in pituitary cells which secrete primarily growth hormone and prolactin (GH3), but not in a line which secretes the 31,000-dalton ACTH precursor and its derived peptides (AtT-20), suggests that 1,25(OH)2D3 may play a regulatory role in specific pituitary cells.  相似文献   

5.
Cultured human macrophages from normal donors were examined for their capability to metabolize 25-hydroxyvitamin D3 (25-(OH)D3). Upon exposure to recombinant human interferon-gamma (IFN-gamma) both bone marrow-derived macrophages (BMM) and pulmonary alveolar macrophages (PAM) produced a polar 25-(OH)D3 metabolite which was purified from conditioned media and unequivocally identified as 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) by UV-absorbance spectrophotometry and mass spectrometry. The BMM and PAM also synthesized a second 25-(OH)D3 metabolite which was structurally identified as 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3). The time course of 25-(OH)D3 metabolism by macrophages suggested that the production of 24,25-(OH)2D3 was stimulated by high intracellular levels of 1,25-(OH)2D3 and not by IFN-gamma. The 1,25-(OH)2D3 obtained from BMM and PAM promoted macrophage-like differentiation of promyelocytic HL-60 leukemia cells and inhibited IFN-gamma production by normal human lymphocytes. Our data suggest that locally high levels of 1,25-(OH)2D3 in the microenvironment of IFN-gamma-stimulated BMM and PAM may modulate the function of hormone-responsive cells.  相似文献   

6.
The active metabolite of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), inhibited morphologic and enzymatic expression during differentiation of preadipocyte to adipocyte. In the presence of approximately 6.4-20 X 10(-10) M 1,25(OH)2D3, the triacylglycerol accumulation was only 50% of that of fully differentiated control cells. High-affinity binding sites for 1,25-dihydroxyvitamin D3 were detected in two preadipose cell lines. The 1,25(OH)2D3 binding component sediments at 3.3 S in 4-24% (w/v) sucrose gradients prepared in hypertonic buffer. Binding assay revealed that Nmax was 70 fmol/mg protein and 90 fmol/mg protein, and Kd value was 170 pM and 37 pM in cell lines ST 13 and 3T3 L1, respectively. We also found that differentiated adipocytes did not contain specific receptors for 1,25(OH)2D3. 1,25(OH)2D3, 1(OH)D3, 24,25(OH)2D3, and 24(OH)D3 all suppressed differentiation of preadipocytes to adipocytes, and the dose required closely reflected the affinities of the various metabolites and the synthetic derivative for 1,25(OH)2D3 receptor. It is suggested that the action of vitamin D3 on preadipocyte differentiation may result from a receptor-mediated event.  相似文献   

7.
Vitamin D and the immune system   总被引:6,自引:0,他引:6  
E P Amento 《Steroids》1987,49(1-3):55-72
The investigation of the potential influence of 1,25-(OH)2D3 on immune cells has expanded our understanding of hormone-cytokine interactions. 1,25-(OH)2D3 stimulates phenotypic and function changes in immature monocytes, alters protein synthesis, increases adherence, and augments interleukin-1 secretion. T lymphocyte proliferation and B cell immunoglobulin production are inhibited by the hormone. 1,25-(OH)2D3 decreases IL 2 and IFN-gamma synthesis by activated T lymphocytes in association with decreases in mRNA for these proteins. The step from the investigation of in vitro interactions to an understanding of in vivo effects of 1,25-(OH)2D3 on immune cells requires further study. On the basis of information at hand, such as the potential for macrophage conversion of 25-OH-D3 to 1,25-(OH)2D3, decreased or increased macrophage function in association with vitamin D3 status in vitro and in vivo, as well as altered T cell subset ratios and proliferative responses with administration of the hormone, it is tempting to speculate that 1,25-(OH)2D3 exerts an influence on immune cell function in concert with other recognized soluble mediators of monocyte and lymphocyte origin. The primary influence of 1,25-(OH)2D3 may vary with the tissue site. Systemic levels of hormone may aid in maintaining tonic immunosuppression and thus prevent trivial antigenic stimuli from initiating an immune response. Upon initiation of an immune response to a significant antigenic challenge 1,25-(OH)2D3 may, in concert with other suppressor mechanisms, limit the extent of the host response by inhibition of IL 2 and IFN-gamma production. At local sites of chronic inflammation concentrations of 1,25-(OH)2D3 may be elevated and may act in an autocrine or paracrine fashion to alter the immune response, for example, by increasing IL 1 production and antigen presentation by tissue monocyte/macrophages. The activation of T cells is associated with the synthesis of 1,25-(OH)2D3 receptors, thus potentially limiting T cell proliferation in the presence of the hormone. Other biological actions of IL 1, however, including effects on cells in bone, joint, and brain may be augmented. Thus, the end result of the opposing effects of 1,25-(OH)2D3 on immune cells and their secretory products may vary with the specific cells involved, their state of maturation and activation, and the local concentrations of the hormone. Studies to date support the concept of an expanded role for 1,25-(OH)2D3 in immune cell biology.  相似文献   

8.
Vitamin D receptor (VDR) is a nuclear protein which mediates the physiological actions of its hormone ligand, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). While it appears that the receptor-hormone complex regulates the expression of hormone-dependent genes involved in mineral homeostasis, its role in induction of differentiation of leukaemic cells is less clear. We have studied the expression of the VDR gene in several sublines of HL-60 leukaemic cells with varying responsiveness to 1,25(OH)2D3. Sublines which rapidly differentiated to monocytic forms were shown to contain elevated steady-state levels of VDR mRNA within 1 h of exposure to high concentration of 1,25(OH)2D3. This up-regulation of the expression of VDR was not apparent in sublines in which monocytic differentiation occurred after a delay of several days. Beginning at approximately 3 h after exposure to 1,25(OH)2D3 in most cases, there was a gradual decline in VDR mRNA levels. Measurement of steady-state levels of mRNA for c-myc and c-fos showed that in sublines of HL-60 cells which respond rapidly to 1,25(OH)2D3, elevation of VDR mRNA is evident prior to the changes in proto-oncogene expression. These data are consistent with the hypothesis that a change in VDR gene expression is one of the steps that promote monocytic differentiation.  相似文献   

9.
The murine myelomonocytic leukemia cell line WEHI-3B D+, which differentiates in response to granulocyte colony stimulating factor (G-CSF), can also be induced to differentiate into monocyte-macrophages by phorbol myristate acetate (PMA) treatment, whereas the WEHI-3B D- subline, which is unresponsive to G-CSF and PMA, can be induced to differentiate to granulocytes as well as monocytes by 1,25-dihydroxycholecalciferol [1,25-(OH)2 D3], the biologically active metabolite of vitamin D3. A newly developed variant of the WEHI-3B D+ line, named WEHI-3B D+ G, which was responsive to G-CSF but not to PMA, was also differentiated to granulocytes by 1,25-(OH)2 D3. Although vitamin D3 has been reported to induce macrophage differentiation in responsive tumor cells, this is the first demonstration that 1,25-(OH)2 D3 can induce granulocyte differentiation. In both differentiation pathways, cessation of cellular proliferation accompanies changes in morphologic and cytochemical properties of the cells. This suggests that leukemic cell lines unresponsive to differentiation agents acting at the cell surface retain their ability to differentiate in response to agents that do not act via the plasma membrane such as 1,25-(OH)2 D3, which has cytosolic/nuclear receptors. Vitamin D3 could act through different cellular pathways inducing differentiation or by bypassing only the first step of a common differentiation cascade used by agents with cell surface receptors such as CSF. These results suggest that low doses of 1,25-(OH)2 D3 may be useful in combination with hemopoietic growth factors (CSFs) as therapeutic agent to induce leukemic cell differentiation in vivo.  相似文献   

10.
Previous studies have indicated that upon in vitro activation with mitogenic lectins, human peripheral blood T lymphocytes express receptors for the steroid hormone 1 alpha, 25-dihydroxyvitamin D3(1,25(OH)2D3). Furthermore, the hormone can inhibit interleukin 2 production by the activated cells. In this investigation, we report that human peripheral B lymphocytes activated in vitro with the B lymphotropic Epstein-Barr virus (EBV) also express 1,25(OH)2D3 receptor-like macromolecules. These receptors are localized in the cell nucleus and exhibit properties similar to those found in classical target tissues for 1,25(OH)2D3. They sediment on sucrose gradients at 3.3 S, display a dissociation constant (Kd) of 4 X 10(-10) M, and can bind to DNA. In addition to the 1,25(OH)2D3 receptors, however, EBV-activated lymphocytes express a second class of 1,25(OH)2D3-binding proteins that appear to occur mainly in the cell cytosol and exhibit distinct biochemical properties from the receptor, including higher sedimentation coefficients (3.7 S to 4 S) and the lack of ability to bind to DNA. The addition of 1,25(OH)2D3 to cultures of EBV-infected cells inhibited the production of IgM and IgG by the B cells. The vitamin D3 analog 24,25(OH)2D3 did not inhibit Ig production, thus suggesting that the effect is probably mediated through the high affinity receptor macromolecule localized in the nucleus. Because the EBV-induced Ig production is independent of T cell participation, the data also suggest that the effects of 1,25(OH)2D3 are exerted directly on the B cell. The present results add to the evidence of the importance of 1,25(OH)2D3 as an immunoregulatory hormone.  相似文献   

11.
12.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   

13.
After injection of 3H 1,25(OH)2 vitamin D3 to rats fed a vitamin D-deficient diet, nuclear concentration and retention of radioactivity exists in reticular cells of the thymus medulla and cortex, as well as outer cells of developing Hassal's corpuscles. Lymphocytes do not show nuclear concentration of radioactivity. Nuclear concentration in reticular cells is prevented by prior injection of excess 1,25(OH)2 vitamin D3. The results indicate that reticular-endothelial cells contain nuclear receptors for 1,25(OH)2 vitamin D3 and suggest that effects of 1,25(OH)2 vitamin D3 on immune response and lymphocyte differentiation are indirect and mediated through genomic modulation of reticular cell functions such as messenger secretion.  相似文献   

14.
The treatment of HL-60 myelocytic leukemia cells with 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) resulted in the activation of a neutral sphingomyelinase and in sphingomyelin turnover (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). In this paper, the effects of 1,25-(OH)2D3 on the product of sphingomyelin hydrolysis, ceramide, and the possible function of ceramide as a lipid mediator of the effects of 1,25-(OH)2D3 on HL-60 cell differentiation were investigated. Treatment of HL-60 cells with 1,25-(OH)2D3 resulted in a time- and dose-dependent increase in ceramide mass levels. Ceramide levels peaked at 2 h following treatment of HL-60 cells with 100 nM 1,25-(OH)2D3 with an increase of 41% over base line. The mass of generated ceramide (13 +/- 2 pmol/nmol of phospholipid) agreed with the mass of hydrolyzed sphingomyelin (17 +/- 4 pmol/nmol of phospholipid). Cell-permeable ceramides with shorter N-acyl chains induced HL-60 cell differentiation at subthreshold concentrations of 1,25-(OH)2D3. Higher concentrations of cell-permeable ceramides potently induced HL-60 cell differentiation independent of 1,25-(OH)2D3. A 2-h exposure of HL-60 cells to N-acetyl-sphingosine was sufficient to cause differentiation. Morphologically, N-acetylsphingosine caused a similar monocytic differentiation of HL-60 cells as did 1,25-(OH)2D3. Exogenous ceramide was further metabolized to sphingomyelin and other sphingolipids, but no conversion to sphingosine was detected. Moreover, sphingosine and its analogs failed to affect monocytic differentiation of HL-60 cells in response to subthreshold 1,25-(OH)2D3, indicating that the effect of ceramide was independent of sphingosine generation. These studies demonstrate that ceramide is a lipid mediator that may transduce the action of 1,25-(OH)2D3 on HL-60 cell differentiation.  相似文献   

15.
1 Alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3, is a potent immunomodulatory agent. Here we show that dendritic cells (DCs) are major targets of 1,25(OH)2D3-induced immunosuppressive activity. 1,25(OH)2D3 prevents the differentiation in immature DCs of human monocytes cultured with GM-CSF and IL-4. Addition of 1,25(OH)2D3 during LPS-induced maturation maintains the immature DC phenotype characterized by high mannose receptor and low CD83 expression and markedly inhibits up-regulation of the costimulatory molecules CD40, CD80, and CD86 and of class II MHC molecules. This is associated with a reduced capacity of DCs to activate alloreactive T cells, as determined by decreased proliferation and IFN-gamma secretion in mixed leukocyte cultures. 1, 25(OH)2D3 also affects maturing DCs, leading to inhibition of IL-12p75 and enhanced IL-10 secretion upon activation by CD40 ligation. In addition, 1,25(OH)2D3 promotes the spontaneous apoptosis of mature DCs. The modulation of phenotype and function of DCs matured in the presence of 1,25(OH)2D3 induces cocultured alloreactive CD4+ cells to secrete less IFN-gamma upon restimulation, up-regulate CD152, and down-regulate CD154 molecules. The inhibition of DC differentiation and maturation as well as modulation of their activation and survival leading to T cell hyporesponsiveness may explain the immunosuppressive activity of 1, 25(OH)2D3.  相似文献   

16.
1,25-Dihydroxyvitamin D3 and the immune system   总被引:1,自引:0,他引:1  
There is substantial evidence that lymphocytes and monocytes are targets for the actions of the hormonal form of vitamin D, 1,25-(OH)2D3 and that 1,25-(OH)2D3 acts to modulate the proliferation, differentiation, and immune functions of these cells. The effects of the hormone on lymphocytes are mediated directly as well as indirectly via the accessory monocytes. Depending upon the presence or absence of monocytes and the mode of lymphocyte activation, 1,25-(OH)2D3 can either stimulate or suppress lymphocytes. This evidence as well as clinical information and in vivo studies support a role of 1,25-(OH)2D3 in immunobiology. The physiologic, pathophysiologic, and pharmacologic implications of the immunomodulating properties of 1,25-(OH)2D3 however have not been well established.  相似文献   

17.
The human-derived promyelocytic leukemia cell line, HL-60, is known to differentiate into mature myeloid cells in the presence of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). We investigated differentiation by monitoring 1,25(OH)2D3-exposed HL-60 cells for phagocytic activity, ability to reduce nitroblue tetrazolium, binding of the chemotaxin N-formyl-methionyl-leucyl-[3H]phenylalanine, development of nonspecific acid esterase activity, and morphological maturation of Wright-Giemsa-stained cells. 1,25(OH)2D3 concentrations as low as 10(-10) M caused significant development of phagocytosis, nitroblue tetrazolium reduction, and the emergence of differentiated myeloid cells that had morphological characteristics of both metamyelocytes and monocytes. These cells were conclusively identified as monocytes/macrophages based upon their adherence to the plastic flasks and their content of the macrophage-characteristic nonspecific acid esterase enzyme. The estimated ED50 for 1,25(OH)2D3-induced differentiation based upon nitroblue tetrazolium reduction and N-formyl-methionyl-leucyl-[3H]phenylalanine binding was 5.7 X 10(-9) M. HL-60 cells exhibited a complex growth response with various levels of 1,25(OH)2D3: less than or equal to 10(-10) M had no detectable effect, 10(-9) M stimulated growth, and greater than or equal to 10(-8) M sharply inhibited proliferation. We also detected and quantitated the specific receptor for 1,25(OH)2D3 in HL-60 and HL-60 Blast, a sub-clone resistant to the growth and differentiation effects of 1,25(OH)2D3. The receptor in both lines was characterized as a DNA-binding protein that migrated at 3.3S on high-salt sucrose gradients. Unequivocal identification was provided by selective dissociation of the 1,25(OH)2D3-receptor complex with the mercurial reagent, p-chloromercuribenzenesulfonic acid, and by a shift in its sedimentation position upon complexing with anti-receptor monoclonal antibody. On the basis of labeling of whole cells with 1,25(OH)2[3H]D3 in culture, we found that HL-60 contains approximately 4,000 1,25(OH)2D3 receptor molecules per cell, while the nonresponsive HL-60 Blast is endowed with approximately 8% of that number. The concentration of 1,25(OH)2D3 (5 X 10(-9) M) in complete culture medium, which facilitates the saturation of receptors in HL-60 cells, is virtually identical to the ED50 for the sterol's induction of differentiation. This correspondence, plus the resistance of the relatively receptor-poor HL-60 Blast, indicates that 1,25(OH)2D3-induced differentiation of HL-60 cells to monocytes/macrophages is occurring via receptor-mediated events.  相似文献   

18.
HL-60 leukemic cells were differentiated along the neutrophilic pathway with retinoic acid (RA) or along the monocytic pathway with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Using a high-resolution two-dimensional electrophoresis technique and subsequent silver staining, differentiation-dependent changes in cytosolic protein pattern of HL-60 cells were analysed and were compared with the cytosolic protein pattern of human neutrophils. The amount of 64 and 50 out of a total of 632 proteins studied was increased or decreased in RA- and 1,25(OH)2D3-differentiated HL-60 cells, respectively, in comparison to undifferentiated HL-60 cells. Thirty-three of these proteins were similarly altered in RA- and 1,25(OH)2D3-differentiated HL-60 cells. Twenty-two and 25 of the proteins altered in amount in RA- or 1,25(OH)2D3-differentiated HL-60 cells versus undifferentiated HL-60 cells were similarly altered in human neutrophils in comparison to undifferentiated HL-60 cells. Seven and 10 of the proteins altered in amount in RA- or 1,25(OH)2D3-differentiated HL-60 cells had specific equivalents in neutrophil cytosol. Our results show (i) that neutrophilic and monocytic differentiation is associated with decreases and increases in amount of cytosolic proteins; (ii) that both differentiation processes share a common set of alterations; and (iii) are associated with specific alterations in protein amount.  相似文献   

19.
The active vitamin D metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), has been shown to be an important regulator of innate and adaptive immune function. In addition, synthesis of 1,25(OH)(2)D(3) from 25-hydroxyvitamin D(3) (25(OH)D(3)) by the enzyme 1α-hydroxylase in monocytes upon activation by TLR signaling has been found to regulate innate immune responses of monocytes in an intracrine fashion. In this study we wanted to determine what cells expressed 1α-hydroxylase in stimulated peripheral blood mononuclear cell (PBMC) cultures and if conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) in PBMC cultures regulated antigen-specific immune responses. Initially, we found that stimulation of PBMCs from animals vaccinated with Mycobacterium bovis (M. bovis) BCG with purified protein derivative of M. bovis (M. bovis PPD) induced 1α-hydroxylase gene expression and that treatment with a physiological concentration of 25(OH)D(3) down-regulated IFN-γ and IL-17F gene expression. Next, we stimulated PBMCs from M. bovis BCG-vaccinated and non-vaccinated cattle with M. bovis PPD and sorted them by FACS according to surface markers for monocytes/macrophages (CD14), B cells (IgM), and T cells (CD3). Sorting the PBMCs revealed that 1α-hydroxylase expression was induced in the monocytes and B cells, but not in the T cells. Furthermore, treatment of stimulated PBMCs with 25(OH)D(3) down-regulated antigen-specific IFN-γ and IL-17F responses in the T cells, even though 1α-hydroxylase expression was not induced in the T cells. Based on evidence of no T cell 1α-hydroxylase we hypothesize that activated monocytes and B cells synthesize 1,25(OH)(2)D(3) and that 1,25(OH)(2)D(3) down-regulates antigen-specific expression of IFN-γ and IL-17F in T cells in a paracrine fashion.  相似文献   

20.
The human colon carcinoma cell line HT-29 differentiates into functional enterocytes upon replacement of glucose by galactose in the culture medium. Since the differentiation of other types of cells is associated with the modulation of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) receptor concentrations and since enterocytes are classical target cells for 1,25(OH)2D3 we have examined the HT-29 cells to determine whether the differentiated and undifferentiated stages could be directly linked to the presence of 1,25(OH)2D3 receptors. HT-29 cells were grown in Dulbecco's modified medium containing 10% fetal calf serum (FCS) and glucose or galactose. Cell differentiation was assessed by measuring the brush border hydrolase, maltase. 1,25(OH)2D3 receptors were studied in the cells after 48 h without FCS. Nuclear uptake was measured in intact dispersed cells and the receptor protein was further characterized by vitamin D metabolite binding specificity, sucrose density gradient analysis and binding to DNA-cellulose. Maltase activity was 5-fold greater in differentiated HT-29 cells than in undifferentiated cells. Scatchard analysis showed a highly specific saturable (9500 sites per cell) high affinity (2 x 10(-10) M), binding of 1,25(OH)2D3 in undifferentiated cells. This receptor-like protein sedimented at 3.3S, bound to and eluted from DNA-cellulose and had all the characteristics of a 1,25(OH)2D3 receptor. No specific binding was detected in differentiated HT-29 cells. The presence of 1,25(OH)2D3 receptors in undifferentiated HT-29 cells implies that these cells are targets for vitamin D. The maltase activity increased significantly when undifferentiated cells were exposed to 1,25(OH)2D3 for 5-6 days, indicating that the hormone can promote differentiation of HT-29 cells. These results demonstrate that HT-29 cells can provide a new model for studying steroid receptor regulation and cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号