首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Purine nucleoside phosphorylase (PNP) was purified from rat hepatoma cells and normal liver tissue utilizing the techniques of ammonium sulfate fractionation, heat treatment, ion-exchange and molecular exclusion chromatography, and polyacrylamide gel electrophoresis. Homogeneity was established by disc gel electrophoresis in the presence and absence of sodium dodecyl sulfate. Purified rat hepatoma and liver PNPs appeared to be identical with respect to subunit and native molecular weight, substrate specificity, heat stability, kinetics and antigenic identity. A native molecular weight of 84,000 was determined by gel filtration. A subunit molecular weight of 29,000 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point was observed at pH 5.8, and the pH optimum was 7.5. Inosine, guanosine, xanthosine, and 6-mercaptopurine riboside were substrates for the enzymes. The apparent Km for both inosine and guanosine was about 1.0 × 10?4m and for phosphate was 4.2 × 10?4m. Hepatoma and liver PNP showed complete cross-reactivity using antiserum prepared against the liver enzyme.  相似文献   

3.
4.
5.
The osmotic permeability coefficient (Pf) for water movement across Novikoff hepatoma cells was found to be 82 ± 3 (S.E.) · 10?5 cm · s?1 at 20°C. The corresponding diffusional permeability coefficient for 3HHO (Pd) was 97 ± 10 (S.E.) · 10?5 cm · s?1, therefore the ratio PfPd is close to unity. The apparent activation energy for water filtration was 10.4 ± 0.4 (S.E.) kcal · mol?1. This value is significantly greater than the activation energy for the self diffusion of water. The product of the hydraulic permeability coefficient and the viscosity coefficient for water was temperature-dependent. However, the product of the hydraulic permeability coefficient and the viscosity coefficient for membrane lipid did not vary with temperature. These data are interpreted as evidence for water movement across a lipid membrane barrier rather than through aqueous channels.  相似文献   

6.
7.
8.
Cross-linking of Novikoff ascites hepatoma cytokeratin filaments   总被引:2,自引:0,他引:2  
We have investigated the structure of solubilized cytokeratins from Novikoff ascites hepatoma using the cleavable cross-linker 3,3'-dithiobis(sulfosuccinimidyl propionate) in the presence of 6 M urea to effect partial complex melting. By two-dimensional gel electrophoresis, in which the protein cross-links were broken in the second dimension, we have identified two major complexes as a p39-p56 dimer and a (p39-p56)2 tetramer, p39 and p56 being two of the major cytokeratins in Novikoff ascites hepatoma. Experiments investigating possible relationships between the dimer and tetramer employed immunoblots and two monoclonal antibodies which recognized either p56 or p39 cytokeratins. When very low protein concentrations were cross-linked, the dimer was the predominant product. As protein concentration increased, we noted a decrease in dimers and a corresponding increase in tetramers, suggesting that the dimer may be a precursor to the tetramer. In support of the cross-linking experiments, two-dimensional gel electrophoresis using 4 M urea in the first dimension indicated a predominant association of p56 and p39 in the Novikoff ascites hepatoma cytokeratin complexes.  相似文献   

9.
E Durban  M Goodenough  J Mills    H Busch 《The EMBO journal》1985,4(11):2921-2926
Changes in phosphorylation modulate the activity of topoisomerase I in vitro. Specifically, enzymatic activity is stimulated by phosphorylation with a purified protein kinase (casein kinase type II). The purpose of this study was to compare the sites that are phosphorylated in vitro by casein kinase type II with the site(s) phosphorylated in vivo in rapidly growing Novikoff hepatoma cells. Topoisomerase I labeled in vitro was characterized by three major tryptic phosphopeptides (I-III). Separation of these peptides by a C18-reverse phase h.p.l.c. column resulted in their elution at fractions 18 (I), 27 (II) and 44 (III) with 17%, 22.5% and 33% acetonitrile, respectively. In contrast, only one major phosphopeptide was identified by h.p.l.c. in topoisomerase I labeled in vivo. This phosphopeptide eluted at fraction 18 corresponding to the elution properties of phosphopeptide I labeled in vitro. It also co-migrated with tryptic phosphopeptide I when subjected to high-voltage electrophoresis on thin-layer cellulose plates. Preliminary experiments suggest that phosphorylation occurs at a serine residue six amino acids from the N-terminus of the peptide. These data indicate that topoisomerase I is phosphorylated in vivo and in vitro within the same tryptic peptide and suggest that topoisomerase I is phosphorylated in vivo by casein kinase II.  相似文献   

10.
A type I topoisomerase has been purified from avian erythrocyte nuclei. The most pure fraction contains one major polypeptide of Mr = 105,000 (80% of total) and several minor ones of lower molecular weight. Active forms of the topoisomerase were identified by covalently binding the enzyme to 32P-DNA, digesting with nuclease and detecting 32P labeled peptides by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Topoisomerase activity, as measured by the ability to covalently bind DNA, is associated with the following peptides: Mr = 105, 83, 54 and 30,000. The similar chromatographic properties of the various forms of topoisomerase suggests a common structural identity as previously proposed for the HeLa topoisomerase I (Liu, L.F. and Miller, K.G. (1981) Proc. Natl. Acad. Sci. USA 78, 3487-3491). The avian enzyme is similar to other eucaryotic type I DNA topoisomerases in that it covalently binds double and single stranded DNA forming an enzyme linked to the 3'-phosphoryl end and after binding to single stranded DNA it can transfer the single stranded donor DNA to an acceptor DNA possessing 5'-OH end groups. The binding site size of topoisomerase on DNA has also been determined using micrococcal nuclease to digest unprotected DNA in the native enzyme/DNA complex. The enzyme blocks access to the helix over a span of 25 bp. These findings are discussed in light of the distribution and function of topoisomerase I in chromatin.  相似文献   

11.
12.
In 0.05 M NaCl, 6-8% of the total soluble proteins from Novikoff hepatoma cells bind rapidly and reversibly to columns containing either heterologous or homologous DNA adsorbed to cellulose. These proteins can be eluted by buffer containing 2.0 M NaCl. 0.5-1% of the total protein exhibits a 7-17-fold preference for rat DNA over Escherichia coli DNA. 1-1.5% of the proteins bind DNA so strongly that elution cannot be effected by 4.0 M NaCl but can be accomplished by deoxyribonuclease I treatment of the columns. DNA-binding proteins eluted by 2.0 M NaCl were labeled with 125I or 131I and characterized by sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. These experiments indicate that DNA-binding proteins represent a discrete subset of the total soluble protein. Many similarities were noted between the major components of the homologous and heterologous DNA-binding fractions.  相似文献   

13.
14.
Nucleoli from Novikoff hepatoma ascites cells contain phosphatase activity that acts upon 32P-labeled nucleolar protein substrates. The activity is optimal near pH 7.0 and is inhibited by increasing concentrations of NaCl. The divalent cations CaCl2, MnCl2 and CoCl2 at 6 mM inhibited phosphatase activity from 30–60%. ZnCl2 completely inhibited the activity above 2 mM while EDTA and MgCl2 had little effect. The activity was stimulated by dithiothreitol and inhibited by N-ethylmaleimide indicating a requirement for free sulfhydryl groups.  相似文献   

15.
16.
The influence of mammalian DNA topoisomerase I phosphorylation on enzyme activity has been investigated. Dephosphorylation by calf intestine alkaline phosphatase abolished the DNA relaxing activity of DNA topoisomerase I and the sensitivity of the enzyme to its specific inhibitor, camptothecin. DNA topoisomerase I could be reactivated by incubation with purified protein kinase C. DNA topoisomerase I was then able to relax supercoiled DNA processively, like the native enzyme, and to cleave 32P-end-labeled SV40 DNA fragments at the same sequences as the native enzyme in the presence of camptothecin. These results show that active DNA topoisomerase I is a phosphoprotein and suggest a possible regulatory role of protein kinase on topoisomerase I activity and on its sensitivity to camptothecin.  相似文献   

17.
DNA-protein crosslinking by heavy metals in Novikoff hepatoma   总被引:3,自引:0,他引:3  
Crosslinking of proteins to DNA was studied in live intact Novikoff ascites hepatoma cells exposed in vitro to salts of chromium VI, III, and II, nickel II, cadmium II, and to CoCl2, As2O3, and AlK(SO4)2. DNA-protein complexes were separated by high-speed centrifugation of cells solubilized in buffered 4% sodium dodecyl sulfate and assayed by polyacrylamide gel electrophoresis. Hexavalent chromium compounds formed DNA-protein complexes very efficiently. The trivalent, poorly soluble, cupric chromite was nearly as efficient crosslinker as hexavalent Cr, perhaps because phagocytosis facilitated its entry into the cells. The more basic divalent form produced hardly any crosslinks. Most of the crosslinked proteins were common to all of the chromium salts employed. Nickel salts formed DNA-protein crosslinks less efficiently. Most proteins crosslinked by this metal had a high molecular weight ranging from 94,000 to 200,000. There was little qualitative difference between the crosslinked protein patterns for several various nickel (II) salts. Similar results were obtained for cells incubated with cadmium salts. Most of the proteins crosslinked by cadmium had high molecular weights and were similar to those crosslinked by nickel (II). Relatively weak, but significant, crosslinking was also observed when the Novikoff hepatoma cells were exposed to CoCl2, As2O3, or AlK(SO4)2.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号