首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restriction fragment length polymorphisms, Western blot (immunoblot) analysis, and fluorescence-labelled signature probes were used for the characterization of methanotrophic bacteria as well as for the identification of methanotrophs which contained the soluble methane monooxygenase (MMO) gene and were able to degrade trichloroethylene (TCE). The gene encoding a soluble MMO component B protein from Methylosinus trichosporium OB3b was cloned. It contained a 2.2-kb EcoRI fragment. With this cloned component B gene as probe, methanotroph types I, II, and X and environmental and bioreactor samples were screened for the presence of the gene encoding soluble MMO. Fragments produced by digestion of DNA with rare cutting restriction endonucleases were separated by pulsed-field gel electrophoresis and transferred to Zeta-Probe membrane (Bio-Rad) for Southern blot analysis. Samples were also analyzed for the presence of soluble MMO by Western blot analysis and the ability to degrade TCE. The physiological groups of methanotrophs in each sample were determined by hybridizing cells with fluorescence-labelled signature probes. Among twelve pure or mixed cultures, DNA fragments of seven methanotrophs hybridized with the soluble MMO B gene probe. When grown in media with limited copper, all of these bacteria degraded TCE. All of them are type II methanotrophs. The soluble MMO component B gene of the type X methanotroph, Methylococcus capsulatus Bath, did not hybridize to the M. trichosporium OB3b soluble MMO component B gene probe, although M. capsulatus Bath also produces a soluble MMO.  相似文献   

2.
The particulate methane monooxygenase gene pmoA, encoding the 27 kDa polypeptide of the membrane-bound particulate methane monooxygenase, was amplified by PCR from DNA isolated from a blanket peat bog and from enrichment cultures established, from the same environment, using methane as sole carbon and energy source. The resulting 525 bp PCR products were cloned and a representative number of clones were sequenced. Phylogenetic analysis of the derived amino acid sequences of the pmoA clones retrieved directly from environmental DNA samples revealed that they form a distinct cluster within representative PmoA sequences from type II methanotrophs and may originate from a novel group of acidophilic methanotrophs. The study also demonstrated the utility of the pmoA gene as a phylogenetic marker for identifying methanotroph-specific DNA sequences in the environment.  相似文献   

3.
Particulate methane monooxygenase genes in methanotrophs.   总被引:14,自引:2,他引:14       下载免费PDF全文
A 45-kDa membrane polypeptide that is associated with activity of the particulate methane monooxygenase (pMMO) has been purified from three methanotrophic bacteria, and the N-terminal amino acid sequence was found to be identical in 17 of 20 positions for all three polypeptides and identical in 14 of 20 positions for the N terminus of AmoB, the 43-kDa subunit of ammonia monooxygenase. DNA from a variety of methanotrophs was screened with two probes, an oligonucleotide designed from the N-terminal sequence of the 45-kDa polypeptide from Methylococcus capsulatus Bath and an internal fragment of amoA, which encodes the 27-kDa subunit of ammonia monooxygenase. In most cases, two hybridizing fragments were identified with each probe. Three overlapping DNA fragments containing one of the copies of the gene encoding the 45-kDa pMMO polypeptide (pmoB) were cloned from Methylococcus capsulatus Bath. A 2.1-kb region was sequenced and found to contain both pmoB and a second gene, pmoA. The predicted amino acid sequences of these genes revealed high identity with those of the gene products of amoB and amoA, respectively. Further hybridization experiments with DNA from Methylococcus capsulatus Bath and Methylobacter albus BG8 confirmed the presence of two copies of pmoB in both strains. These results suggest that the 45- and 27-kDa pMMO-associated polypeptides of methanotrophs are subunits of the pMMO and are present in duplicate gene copies in methanotrophs.  相似文献   

4.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

5.
Screening of obligate methanotrophs for soluble methane monooxygenase genes   总被引:3,自引:0,他引:3  
A 5.8 kb fragment of chromosomal DNA from Methylococcus capsulatus (Bath) containing genes encoding the soluble methane monooxygenase enzyme complex was used as a probe for the detection of soluble monooxygenase genes in a number of representative strains of obligate methanotrophs. Only type II methanotrophs of the genus Methylosinus were found to contain homologues to the Methylococcus gene probe. This probe was also used successfully to detect soluble methane monooxygenase genes in a variety of methanotrophs by colony hybridizations.  相似文献   

6.
7.
Methylosinus trichosporium OB3b biosynthesizes a broad specificity soluble methane monooxygenase that rapidly oxidizes trichloroethylene (TCE). The selective expression of the soluble methane monooxygenase was followed in vivo by a rapid colorimetric assay. Naphthalene was oxidized by purified soluble methane monooxygenase or by cells grown in copper-deficient media to a mixture of 1-naphthol and 2-naphthol. The naphthols were detected by reaction with tetrazotized o-dianisidine to form purple diazo dyes with large molar absorptivities. The rate of color formation with the rapid assay correlated with the velocity of TCE oxidation that was determined by gas chromatography. Both assays were used to optimize conditions for TCE oxidation by M. trichosporium OB3b and to test several methanotrophic bacteria for the ability to oxidize TCE and naphthalene.Abbreviations A600 absorbance due to cell density measured at 600 nm - HPLC high pressure liquid chromatography - NADH reduced nicotinamide adenine dinucleotide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - sMMO soluble methane monooxygenase - TCE trichloroethylene  相似文献   

8.
Soluble methane monooxygenase: activation of dioxygen and methane   总被引:6,自引:0,他引:6  
The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse techniques have clarified subtle details about each step in the reaction, from binding and activating dioxygen, to hydroxylation of alkanes and other substrates, to the electron transfer events required to complete the catalytic cycle.  相似文献   

9.
Soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO) gene clusters in the marine methanotroph Methylomicrobium sp. strain NI were completely sequenced and analysed. Degenerated primers were newly designed and used to amplify the gene fragments containing intergenic mmoX-Y and mmoD-C regions and a partial pmoC region. Phylogenetic analysis of amino acid sequences deduced from mmoX and pmoA, as well as of 16S rRNA gene sequences, indicated that this strain was most closely related to the halotolerant methanotroph Methylomicrobium buryatense. There were putative sigma(54)- and sigma(70)-dependent promoter sequences upstream of the sMMO and pMMO genes, respectively, and mmoG, which is known to be related to the expression and assembly of sMMO, existed downstream of the sMMO genes. These findings suggest that the major components and regulation of MMOs in this marine methanotroph are quite similar to those in freshwater methane oxidizers, despite the difference in their habitats.  相似文献   

10.
Methane monooxygenase from Methylobacterium sp. strain CRL-26 which catalyzes the oxygenation of hydrocarbons was resolved into two components, a hydroxylase and a flavoprotein. An anaerobic procedure was developed for the purification of the hydroxylase to homogeneity. The molecular weight of the hydroxylase as determined by gel filtration was 220,000, and that determined by sedimentation equilibrium analysis was about 225,000. The purified hydroxylase contained three nonidentical subunits with molecular weights of about 55,000, 40,000, and 20,000, in equal amounts as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is an alpha 2 beta 2 gamma 2 protein. Optical absorption spectra revealed peaks near 408 and 280 nm, and fluorescence spectra revealed emission peaks at 490 and 630 nm. The purified hydroxylase contained 2.8 +/- 0.2 mol of iron and 0.5 +/- 0.1 mol of zinc per mol of protein but negligible amounts of acid-labile sulfide. The antisera prepared against the hydroxylase showed cross-reactivity with hydroxylase components in soluble extracts from other methanotrophs.  相似文献   

11.
The rate and products of trichloroethylene (TCE) oxidation by Methylomicrobium album BG8 expressing membrane-associated methane monooxygenase (pMMO) were determined using 14C radiotracer techniques. [(14)C]TCE was degraded at a rate of 1.24 nmol (min mg protein)(-1) with the initial production of glyoxylate and then formate. Radiolabeled CO(2) was also found after incubating M. album BG8 for 5 h with [(14)C]TCE. Experiments with purified pMMO from Methylococcus capsulatus Bath showed that TCE could be mineralized to CO(2) by pMMO. Oxygen uptake studies verified that M. album BG8 could oxidize glyoxylate and that pMMO was responsible for the oxidation based on acetylene inactivation studies. Here we propose a pathway of TCE oxidation by pMMO-expressing cells in which TCE is first converted to TCE-epoxide. The epoxide then spontaneously undergoes HCl elimination to form glyoxylate which can be further oxidized by pMMO to formate and CO(2).  相似文献   

12.
Two methanotrophic bacteria with optimum growth temperatures above 40° C were isolated. Thermotolerant strain LK6 was isolated from agricultural soil, and the moderately thermophilic strain OR2 was isolated from the effluent of an underground hot spring. When compared to the described thermophilic methanotrophs Methylococcus capsulatus and Methylococcus thermophilus, these strains are phenotypically similar to Methylococcus thermophilus. However, their 16S rRNA gene sequences are markedly different from the sequence of Methylococcus thermophilus (∼ 8% divergence) and, together with Methylomonas gracilis, they form a distinct, new genus within the γ-subgroup of the Proteobacteria related to extant Type I methanotrophs. Further phenotypic characterisation showed that the isolates possess particulate methane monooxygenase (pMMO) but do not contain soluble methane monooxygenase. The nucleotide sequence of a gene encoding pMMO (pmoA) was determined for both isolates and for Methylomonas gracilis. PmoA sequence comparisons confirmed the monophyletic nature of this newly recognised group of thermophilic methanotrophs and their relationship to previously described Type I methanotrophs. We propose that strains OR2 and LK6, together with the misclassified thermophilic strains Methylomonas gracilis VKM-14LT and Methylococcus thermophilus IMV-B3122, comprise a new genus of thermophilic methanotrophs, Methylocaldum gen. nov., containing three new species: Methylocaldum szegediense, Methylocaldum tepidum and Methylocaldum gracile. Received: 2 April 1997 / Accepted: 23 July 1997  相似文献   

13.
Brazeau BJ  Lipscomb JD 《Biochemistry》2003,42(19):5618-5631
The regulatory component MMOB of soluble methane monooxygenase (sMMO) has been hypothesized to control access of substrates into the active site of the hydroxylase component (MMOH) through formation of a size specific channel or region of increased structural flexibility tuned to methane and O(2). Accordingly, a decrease in the size of four MMOB residues (N107G/S109A/S110A/T111A, the Quad mutant) was shown to accelerate the reaction of substrates larger than methane with the reactive MMOH intermediate Q [Wallar, B. J., and Lipscomb, J. D. (2001) Biochemistry 40, 2220-2233]. Here, this hypothesis is tested by construction of single and double mutations involving the residues of the Quad mutant. It is shown that mutations of residues that extend into the core structure of MMOB alter many aspects of the MMOH catalyzed reaction but do not mimic the effects of the Quad mutant. In contrast, the MMOB residues that are thought to form part of the interface in the MMOH-MMOB complex increase active site accessibility as observed for the Quad mutant. In particular, the mutant T111A mimics most of the effects of the Quad mutant; thus, Thr111 is proposed to most directly control access. Unexpectedly, mutation of Thr111 to the larger Tyr greatly increases the rate constant for the reaction of larger substrates such as ethane, furan, and nitrobenzene with Q while decreasing the rate constant for the reaction with methane. Other steps in the cycle are dramatically slowed, the regiospecificity for nitrobenzene oxidation is altered, and 10-fold more T111Y than wild-type MMOB is required to maximize the rate of turnover. Thus, T111Y appears to make a more extensive change in local interface structure that allows hydrocarbons at least as large as ethane to bind and react with Q similarly. As a result, the bond cleavage rates for methane, ethane, and their deuterated analogues are shown for the first time to correlate with bond strength in accord with a mechanism in which C-H bond cleavage occurs during reaction of substrates with Q.  相似文献   

14.
Chang SL  Wallar BJ  Lipscomb JD  Mayo KH 《Biochemistry》1999,38(18):5799-5812
Methane monooxygenase (MMO) is a nonheme iron-containing enzyme which consists of three protein components: a hydroxylase (MMOH), an NADH-linked reductase (MMOR), and a small "B" component (MMOB) which plays a regulatory role. Here, 1H, 13C, 15N heteronuclear 2D and 3D NMR spectroscopy has been used to derive the solution structure of the 138 amino acid MMOB protein in the monomer state. Pulse field gradient NMR self-diffusion measurements indicate predominant formation of dimers at 1 mM MMOB and monomers at or below 0.2 mM. MMOB is active as a monomer. Aggregate exchange broadening and limited solubility dictated that multidimensional heteronuclear NMR experiments had to be performed at a protein concentration of 0.2 mM. Using 1340 experimental constraints (1182 NOEs, 98 dihedrals, and 60 hydrogen bonding) within the well-folded part of the protein (residues 36-126), MMOB structural modeling produced a well-defined, compact alpha/beta fold which consists of three alpha-helices and six antiparallel beta-strands arranged in two domains: a betaalphabetabeta and a betaalphaalphabetabeta. Excluding the ill-defined N- and C-terminal segments (residues 1-35 and 127-138), RMS deviations are 1.1 A for backbone atoms and 1.6 A for all non-hydrogen atoms. Compared to the lower resolution NMR structure for the homologous protein P2 from the Pseudomonas sp. CF600 phenol hydroxylase system (RMSD = 2.48 A for backbone atoms) (Qian, H., Edlund, U., Powlowski, J., Shingler, V., and Sethson, I. (1997) Biochemistry, 36, 495-504), that of MMOB reveals a considerably more compact protein. In particular, MMOB lacks the large "doughnut" shaped cavity reported for the P2 protein. This difference may result from the limited number of long-range NOEs that were available for use in the modeling of the P2 structure. This NMR-derived structure of MMOB, therefore, presents the first high-resolution structure of a small protein effector of a nonheme oxygenase system.  相似文献   

15.
Abstract Purification of the regulatory protein B of the soluble methane monooxygenase complex from Methylococcus capsulatus (Bath) has revealed that the organism contains two forms of this protein, one of which appears to be a carboxy-terminal truncate. Protein sequencing has confirmed the identity of these two proteins and allowed the identification of the gene encoding protein B on the methane monooxygenase gene cluster.  相似文献   

16.
Whole-cell assays were used to measure the effect of dichloromethane and trichloroethylene on methane oxidation by Methylosinus trichosporium OB3b synthesizing the membrane-associated or particulate methane monooxygenase (pMMO). For M. trichosporium OB3b grown with 20 μM copper, no inhibition of methane oxidation was observed in the presence of either dichloromethane or trichloroethylene. If 20 mM formate was added to the reaction vials, however, methane oxidation rates increased and inhibition of methane oxidation was observed in the presence of dichloromethane and trichloroethylene. In the presence of formate, dichloromethane acted as a competitive inhibitor, while trichloroethylene acted as a noncompetitive inhibitor. The finding of noncompetitive inhibition by trichloroethylene was further examined by measuring the inhibition constants K iE and K iES. These constants suggest that trichloroethylene competes with methane at some sites, although it can bind to others if methane is already bound. Whole-cell oxygen uptake experiments for active and acetylene-treated cells also showed that provision of formate could stimulate both methane and trichloroethylene oxidation and that trichloroethylene did not affect formate dehydrogenase activity. The finding that different chlorinated hydrocarbons caused different inhibition patterns can be explained by either multiple substrate binding sites existing in pMMO or multiple forms of pMMO with different activities. The whole-cell analysis performed here cannot distinguish between these models, and further work should be done on obtaining active preparations of the purified pMMO. Received: 3 November 1998 / Accepted: 1 March 1999  相似文献   

17.
18.
Soluble methane monooxygenase (sMMO) of Methylosinus trichosporium OB3b is a three-component oxygenase that catalyses the O(2)- and NAD(P)H-dependent oxygenation of methane and numerous other substrates. Despite substantial interest in the use of genetic techniques to study the mechanism of sMMO and manipulate its substrate specificity, directed mutagenesis of active-site residues was previously impossible because no suitable heterologous expression system had been found for expression in a highly active form of the hydroxylase component, which is an (alphabetagamma)(2) complex containing the binuclear iron active site. A homologous expression system that enabled the expression of recombinant wild-type sMMO in a derivative of M. trichosporium OB3b from which the chromosomal copy of the sMMO-encoding operon had been partially deleted was previously reported. Here we report substantial development of this method to produce a system for the facile construction and expression of mutants of the hydroxylase component of sMMO. This new system has been used to investigate the functions of Cys 151 and Thr 213 of the alpha subunit, which are the only nonligating protonated side chains in the hydrophobic active site. Both residues were found to be critical for the stability and/or activity of sMMO, but neither was essential for oxygenation reactions. The T213S mutant was purified to >98% homogeneity. It had the same iron content as the wild type and had 72% wild-type activity toward toluene but only 17% wild-type activity toward propene; thus, its substrate profile was significantly altered. With these results, we have demonstrated proof of the principle for protein engineering of this uniquely versatile enzyme.  相似文献   

19.
The methanol dehydrogenase gene mxaF, encoding the large subunit of the enzyme, was amplified from the DNA of a number of representative methanotrophs, methyletrophs, and environmental samples by PCR using primers designed from regions of conserved amino acid sequence identified by comparison of three known sequences of the large subunit of methanol dehydrogenase. The resulting 550-bp PCR products were cloned and sequenced. Analysis of the predicted amino acid sequences corresponding to these mxaF genes revealed strong sequence conservation. Of the 172 amino acid residues, 47% were conserved among all 22 sequences obtained in this study. Phylogenetic analysis of these MxaF sequences showed that those from type I and type II methanotrophs form two distinct clusters and are separate from MxaF sequences of other gram-negative methylotrophs. MxaF sequences retrieved by PCR from DNA isolated from a blanket bog peat core sample formed a distinct phylogenetic cluster within the MxaF sequences of type II methanotrophs and may originate from a novel group of acidophilic methanotrophs which have yet to be cultured from this environment.  相似文献   

20.
Methane monooxygenase (MMO), found in aerobic methanotrophic bacteria, catalyzes the O2-dependent conversion of methane to methanol. The soluble form of the enzyme (sMMO) consists of three components: a reductase, a regulatory "B" component (MMOB), and a hydroxylase component (MMOH), which contains a hydroxo-bridged dinuclear iron cluster. Two genera of methanotrophs, termed Type X and Type II, which differ markedly in cellular and metabolic characteristics, are known to produce the sMMO. The structure of MMOH from the Type X methanotroph Methylococcus capsulatus Bath (MMO Bath) has been reported recently. Two different structures were found for the essential diiron cluster, depending upon the temperature at which the diffraction data were collected. In order to extend the structural studies to the Type II methanotrophs and to determine whether one of the two known MMOH structures is generally applicable to the MMOH family, we have determined the crystal structure of the MMOH from Type II Methylosinus trichosporium OB3b (MMO OB3b) in two crystal forms to 2.0 A resolution, respectively, both determined at 18 degrees C. The crystal forms differ in that MMOB was present during crystallization of the second form. Both crystal forms, however, yielded very similar results for the structure of the MMOH. Most of the major structural features of the MMOH Bath were also maintained with high fidelity. The two irons of the active site cluster of MMOH OB3b are bridged by two OH (or one OH and one H2O), as well as both carboxylate oxygens of Glu alpha 144. This bis-mu-hydroxo-bridged "diamond core" structure, with a short Fe-Fe distance of 2.99 A, is unique for the resting state of proteins containing analogous diiron clusters, and is very similar to the structure reported for the cluster from flash frozen (-160 degrees C) crystals of MMOH Bath, suggesting a common active site structure for the soluble MMOHs. The high-resolution structure of MMOH OB3b indicates 26 consecutive amino acid sequence differences in the beta chain when compared to the previously reported sequence inferred from the cloned gene. Fifteen additional sequence differences distributed randomly over the three chains were also observed, including D alpha 209E, a ligand of one of the irons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号