首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.Free fatty acids (FFA)5 and other lipid molecules are important for proper glucose-stimulated insulin secretion (GSIS) by β-cells. Thus, deprivation of fatty acids (FA) in vivo (1) diminishes GSIS, whereas a short term exposure to FFA enhances it (13). In contrast, a sustained provision of FA, particularly in the presence of high glucose in vitro, is detrimental to β-cells in that it reduces insulin gene expression (4) and secretion (5) and induces β-cell apoptosis (6). The FA supply to the β-cells can be from exogenous sources, such as plasma FFAs and lipoproteins, or endogenous sources, such as intracellular triglyceride (TG) stores. Studies from our laboratory (710) and others (11, 12) support the concept that the hydrolysis of endogenous TG plays an important role in fuel-induced insulin secretion because TG depletion with leptin (13) or inhibition of TG lipolysis by lipase inhibitors such as 3,5-dimethylpyrazole (7) or orlistat (11, 12) markedly curtail GSIS in rat islets. Furthermore, mice with β-cell-specific knock-out of hormone-sensitive lipase (HSL), which hydrolyzes both TG and diacylglycerol (DAG), show defective first phase GSIS in vivo and in vitro (14).Lipolysis is an integral part of an essential metabolic pathway, the TG/FFA cycle, in which FFA esterification onto a glycerol backbone leading to the synthesis of TG is followed by its hydrolysis with the release of the FFA that can then be re-esterified. Intracellular TG/FFA cycling is known to occur in adipose tissue of rats and humans (15, 16) and also in liver and skeletal muscle (17). It is generally described as a “futile cycle” as it leads to the net hydrolysis of ATP with the generation of heat (18). However, several studies have shown that this cycle has important functions in the cell. For instance, in brown adipose tissue, it contributes to overall thermogenesis (17, 19). In islets from the normoglycemic, hyperinsulinemic, obese Zucker fatty rat, increased GSIS is associated with increased glucose-stimulated lipolysis and FA esterification, indicating enhanced TG/FFA cycling (10). Stimulation of lipolysis by glucose has also been observed in isolated islets from normal rats (12) and HSL−/− mice (8) indicating the presence of glucose-responsive TG/FFA cycling in pancreatic β-cells.The identity of the key lipases involved in the TG/FFA cycle in pancreatic islets is uncertain. HSL is expressed in islets (20), is up-regulated by long term treatment with elevated glucose (21), and is associated with insulin secretory granules (22). In addition, our earlier results suggested that elevated HSL expression correlates with augmented TG/FFA cycling in islets of Zucker fatty rats (10). However, it appears that other lipases may contribute to lipolysis and the regulation of GSIS in islet tissue. Thus, results from studies using HSL−/− mice showed unaltered GSIS (8, 23), except in fasted male mice (8, 9) in which lipolysis was decreased but not abolished. Furthermore, HSL−/− mice show residual TG lipase activity (8) indicating the presence of other TG lipases.Recently, adipocyte triglyceride lipase (ATGL; also known as Desnutrin, TTS-2, iPLA2-ζ, and PNPLA2) (2426) was found to account for most if not all of the residual lipolysis in HSL−/− mice (26, 27). Two homologues of ATGL, Adiponutrin and GS2, have been described in adipocytes (24). All three enzymes contain a patatin-like domain with broad lipid acyl-hydrolase activity. However, it is not known if adiponutrin and GS2 are actually TG hydrolases. An additional lipase, TG hydrolase or carboxylesterase-3, has been identified in rat adipose tissue (28, 29). Although the hydrolysis of TG is catalyzed by all these lipases, HSL can hydrolyze both TG and DAG, the latter being a better substrate (30).In this study, we observed that besides HSL, ATGL (31), adiponutrin, and GS2 are expressed in rat islets and INS832/13 cells, with ATGL being the most abundant. We then focused on the role of ATGL in fuel-stimulated insulin secretion in two models, INS832/13 β-cells in which ATGL expression was reduced by RNA interference-knockdown (ATGL-KD) and ATGL−/− mice.  相似文献   

17.
18.
Codon optimization was used to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli. The expressed enzyme cleaved β-carotene at its central double bond (15,15′) to yield two molecules of all-trans-retinal. The molecular mass of the native purified enzyme was ∼64 kDa as a dimer of 32-kDa subunits. The Km, kcat, and kcat/Km values for β-carotene as substrate were 37 μm, 3.6 min−1, and 97 mm−1 min−1, respectively. The enzyme exhibited the highest activity for β-carotene, followed by β-cryptoxanthin, β-apo-4′-carotenal, α-carotene, and γ-carotene in decreasing order, but not for β-apo-8′-carotenal, β-apo-12′-carotenal, lutein, zeaxanthin, or lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C35 seems to be essential for enzyme activity. The oxygen atom of retinal originated not from water but from molecular oxygen, suggesting that the enzyme was a β-carotene 15,15′-dioxygenase. Although the Blh protein and β-carotene 15,15′-monooxygenases catalyzed the same biochemical reaction, the Blh protein was unrelated to the mammalian β-carotene 15,15′-monooxygenases as assessed by their different properties, including DNA and amino acid sequences, molecular weight, form of association, reaction mechanism, kinetic properties, and substrate specificity. This is the first report of in vitro characterization of a bacterial β-carotene-cleaving enzyme.Vitamin A (retinol) is a fat-soluble vitamin and important for human health. In vivo, the cleavage of β-carotene to retinal is an important step of vitamin A synthesis. The cleavage can proceed via two different biochemical pathways (1, 2). The major pathway is a central cleavage catalyzed by mammalian β-carotene 15,15′-monooxygenases (EC 1.14.99.36). β-Carotene is cleaved by the enzyme symmetrically into two molecules of all-trans-retinal, and retinal is then converted to vitamin A in vivo (35). The second pathway is an eccentric cleavage that occurs at double bonds other than the central 15,15′-double bond of β-carotene to produce β-apo-carotenals with different chain lengths, which are catalyzed by carotenoid oxygenases from mammals, plants, and cyanobacteria (6). These β-apo-carotenals are degraded to one molecule of retinal, which is subsequently converted to vitamin A in vivo (2).β-Carotene 15,15′-monooxygenase was first isolated as a cytosolic enzyme by identifying the product of β-carotene cleavage as retinal (7). The characterization of the enzyme and the reaction pathway from β-carotene to retinal were also investigated (4, 8). The enzyme activity has been found in mammalian intestinal mucosa, jejunum enterocytes, liver, lung, kidney, and brain (5, 9, 10). Molecular cloning, expression, and characterization of β-carotene 15,15′-monooxygenase have been reported from various species, including chickens (11), fruit flies (12), humans (13), mice (14), and zebra fishes (15).Other proteins thought to convert β-carotene to retinal include bacterioopsin-related protein (Brp) and bacteriorhodopsin-related protein-like homolog protein (Blh) (16). Brp protein is expressed from the bop gene cluster, which encodes the structural protein bacterioopsin, consisting of at least three genes as follows: bop (bacterioopsin), brp (bacteriorhodopsin-related protein), and bat (bacterioopsin activator) (17). brp genes were reported in Haloarcula marismortui (18), Halobacterium sp. NRC-1 (19), Halobacterium halobium (17), Haloquadratum walsbyi, and Salinibacter ruber (20). Blh protein is expressed from the proteorhodopsin gene cluster, which contains proteorhodopsin, crtE (geranylgeranyl-diphosphate synthase), crtI (phytoene dehydrogenase), crtB (phytoene synthase), crtY (lycopene cyclase), idi (isopentenyl diphosphate isomerase), and blh gene (21). Sources of blh genes were previously reported in Halobacterium sp. NRC-1 (19), Haloarcula marismortui (18), Halobacterium salinarum (22), uncultured marine bacterium 66A03 (16), and uncultured marine bacterium HF10 49E08 (21). β-Carotene biosynthetic genes crtE, crtB, crtI, crtY, ispA, and idi encode the enzymes necessary for the synthesis of β-carotene from isopentenyl diphosphate, and the Idi, IspA, CrtE, CrtB, CrtI, and CrtY proteins have been characterized in vitro (2328). Blh protein has been proposed to catalyze or regulate the conversion of β-carotene to retinal (29, 30), but there is no direct proof of the enzymatic activity.In this study, we used codon optimization to synthesize the blh gene from the uncultured marine bacterium 66A03 for expression in Escherichia coli, and we performed a detailed biochemical and enzymological characterization of the expressed Blh protein. In addition, the properties of the enzyme were compared with those of mammalian β-carotene 15,15′-monooxygenases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号