首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
H-NS is a major Escherichia coli nucleoid-associated protein involved in bacterial DNA condensation and global modulation of gene expression. This protein exists in cells as at least two different isoforms separable by isoelectric focusing. Among other phenotypes, mutations in hns result in constitutive expression of the proU and fimB genes, increased fimA promoter inversion rates, and repression of the flhCD master operon required for flagellum biosynthesis. To understand the relationship between H-NS structure and function, we transformed a cloned hns gene into a mutator strain and collected a series of mutant alleles that failed to repress proU expression. Each of these isolated hns mutant alleles also failed to repress fimB expression, suggesting that H-NS-specific repression of proU and fimB occurs by similar mechanisms. Conversely, alleles encoding single amino acid substitutions in the C-terminal DNA-binding domain of H-NS resulted in significantly reduced affinity for DNA yet conferred a wild-type fimA promoter inversion frequency, indicating that the mechanism of H-NS activity in modulating promoter inversion is independent of DNA binding. Furthermore, two specific H-NS amino acid substitutions resulted in hypermotile bacteria, while C-terminal H-NS truncations exhibited reduced motility. We also analyzed H-NS isoform composition expressed by various hns mutations and found that the N-terminal 67 amino acids were sufficient to support posttranslational modification and that substitutions at positions 18 and 26 resulted in the expression of a single H-NS isoform. These results are discussed in terms of H-NS domain organization and implications for biological activity.  相似文献   

10.
A conditional-lethal mutation (rpoB364) mapping to the gene that encodes the β-subunit of RNA polymerase was obtained inEscherichia coli. This mutation caused cell filamentation at the restrictive growth temperature and partial derepression of the osmotically regulatedproU operon at the permissive growth temperature. Even under the latter condition, transformants of therpoB364 mutant strain carrying the plasmid vector pACYC184, but not those carrying otherpolA-dependent multicopy plasmids such as pACYC177 or pBR322, were killed in early stationary phase; one class of suppressor mutants isolated as survivors within these transformant colonies were further derepressed forproU-lac expression, and the mutation in each of several independent clones of this class was mapped tohns, the gene that encodes the protein H-NS of theE. coli nucleoid. Thehns mutations did not suppress the conditional-lethal growth phenotype of therpoB364 mutant itself. On the other hand, intracellular overproduction of guanosine 3’, 5’-bispyrophosphate (ppGpp) in therpoB364 strain alleviated both the growth inhibition at the restrictive temperature and the pACYC184-mediated stationary-phase lethality. Upon subcloning into pUC19 or into pACYC177, a 105-bpXbal-HindIII fragment from pACYC184 was shown to be sufficient to confer therpoB364 hns +-dependent lethal phenotype. We suggest that the level in stationary-phase cultures of a gene product(s) that interacts with the pACYC184 DNA fragment is altered in therpoB364 hns+derivative (compared to that inrpoB+ orrpoB364 hns strains) and that this results in cell suicide.  相似文献   

11.
12.
13.
14.

Background  

H-NS is a DNA-binding protein with central roles in gene regulation and nucleoid structuring in Escherichia coli. There are over 60 genes that are influenced by H-NS many of which are involved in metabolism. To determine the significance of H-NS-regulated genes in metabolism and stress tolerance, an hns mutant of E. coli O157:H7 was generated (hns::nptI, FRIK47001P) and its growth, metabolism, and gastrointestinal passage compared to the parent strain (43895) and strain FRIK47001P harboring pSC0061 which contains a functional hns and 90-bp upstream of the open-reading frame.  相似文献   

15.
16.
17.
Summary A class of trans-acting mutations, which alter the osmoregulated expression of the Escherichia coli proU operon, maps at 27 min on the chromosome in a locus we have called osmZ. Mutations in osmZ are allelic to bglY, pilG and virR, affect gene expression, increase the frequency of the site-specific DNA inversion mediating fimbrial phase variation, stimulate the formation of deletions, and influence in vivo supercoiling of reporter plasmids. We have cloned the osmZ + gene, mapped it at 1307 kb of the E. coli restriction map, identified its gene product as a 16 kDa protein, and determined the nucleotide sequence of the osmZ + gene. The deduced amino acid sequence for OsmZ predicts a protein of 137 amino acid residues with a calculated molecular weight of 15 530. The primary sequence of OsmZ is identical to that of H-NS (H1a), a DNA-binding protein that affects DNA topology and is known to be associated with the bacterial nucleoid. Thus, osmZ is the structural gene for the H-NS (H1a) protein. The nucleotide sequence of osmZ is almost identical to that of hns; however, hns was incorrectly located at 6.1 min on the E. coli linkage map. Increased osmZ gene dosage leads to cell filament formation, altered gene expression, and reduced frequency of fimbrial phase variation. Our results suggest that the nucleoid-associated DNA-binding protein H-NS (H1a) plays a critical role in gene expression and in determining the structure of the genetic material.  相似文献   

18.
The environmentally responsive biodegradative arginine (adi) and lysine (cad) decarboxylases are maximally induced when Escherichia coli is cultured under acidic, anaerobic conditions in rich medium. Previously, transposon mutagenesis led to the identification of hns (encoding H-NS, a histone-like DNA binding protein) as being a trans-acting regulatory factor of both systems. The hns mutants show derepressed expression of adi or cad (i.e., their expression is increased). The effects of the local anesthetics phenethyl alcohol (PEA) and procaine (both environmental perturbants) were investigated with lacZ operon fusions to either adi or cad and their respective hns mutants. These results indicate that wild-type fusion strains are insensitive to either PEA or procaine, but that hns mutants show decreased -galactosidase synthesis in the presence of one or both of the local anesthetics. This is the first report of the effect of local anesthetics on hns mutants in this or any other environmentally responsive system.  相似文献   

19.
20.
The Escherichia coli protein Hha is a temperature- and osmolarity-dependent modulator of the expression of the hemolysin operon. The Hha protein was purified and its DNA-binding properties analyzed. Hha binds in a non-specific manner throughout the upstream regulatory region of the hemolysin operon in the recombinant hemolytic plasmid pANN202-312. A search for interacting proteins revealed that Hha interacts with H-NS. DNA-binding studies showed that, in vitro, Hha and H-NS together form a complex with DNA that differs from those formed with either protein alone. These data, together with the effects of hha and hns mutations on the expression of the hemolysin genes, suggest that in vivo H-NS and Hha form a nucleoid-protein complex that accounts for the thermo-osmotic regulation of the hemolysin operon in E. coli. Received. 18 October 1999 / Accepted: 21 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号