首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ADP-ATP exchange reaction was studied in NaI-treated microsomes from rat brain. At low concentrations of MgCl2 a nucleotide exchange reaction, elicited in the presence of Na+, had an absolute specificity for ATP. The reaction was stimulated by oligomycin and inhibited by ouabain and EDTA. It is probable that this Na+-stimulated ADP-ATP exchange reaction is a component of the Na-K ATPase system.  相似文献   

2.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

3.
—Microsomal fractions prepared from guinea pig cerebral cortex manifested ADP-ATP exchange activity, 40–99 per cent of which was extractable by dilute salt solutions. All of the (Na+, K+)-ATPase activity remained in the particulate material. The unextracted ADP-ATP exchange activity was stimulated six to seven fold by a non-ionic detergent (Lubrol W). When pre-extracted microsomes were sedimented in a sucrose density gradient, the ADP-ATP exchange activity was more widely distributed than (Na+, K+)-ATPase or adenylate kinase activities. The ADP-ATP exchange activity of microsomes extracted with NaI was stimulated by Na+ ions when the Mg2+ concentration in the reaction mixture was low (0·2 mm ). The Na+ stimulation of exchange activity was more variable than was the stimulation of phosphate formation by Na+ plus K+. The Na+-stimulated ADP-ATP exchange reaction of extracted microsomes may be a component of the (Na+, K+)-ATPase system, which has not been freed from adenylate kinase or possibly other contributing enzyme systems.  相似文献   

4.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

5.
Studies in vivo and in vitro of the distribution of label in C-1 of glutamate and glutamine and C-4 of aspartate in the free amino acids of brain were carried out. [1-14C]-Acetate was used both in vivo and in vitro and l -[U-14C]aspartate and l -[U-14C]glutamate were used in vitro.
  • 1 The results obtained with labelled acetate and aspartate suggest that CO2 and a 3-carbon acid may exchange at different rates on a COa-fixing enzyme.
  • 2 The apparent cycling times of both glutamate and glutamine show fast components measured in minutes and slow components measured in hours.
  • 3 With [1-14C]acetate in vitro glutamine is more rapidly labelled in C-1 than is glutamate at early time points; the curves cross over at about 7 min.
  • 4 The results support and extend the concept of metabolic compartmentation of amino acid metabolism in brain.
  相似文献   

6.
Abstract— Microsomal, mitochondrial, synaptosomal and synaptic vesicle fractions of rat brain took up [3H-methyl]choline by a similar carrier-mediated transport system. The apparent Km for the uptake of [3H-methyl]choline in these subcellular fractions was about 5 × 10?5 M. Choline uptake was also observed in microsomal fractions prepared from liver and skeletal muscle. Virtually identical kinetic properties for [3H-methyl]choline transport were found in the synaptosomal fractions prepared from the whole brain, cerebellum or basal ganglia. Countertransport of [3H-methyl]choline from the synaptosomal fraction was demonstrated against a concentration gradient. HC-3 was a competitive inhibitor of the uptake of [3H-methyl]choline in brain microsomal, synaptosomal and mitochondria] fractions with respective values for Ki of 4.0, 2.1 and 2.3 × 10?5 M. HC-15 was a competitive inhibitor of the transport of [3H-methyl]choline in the synaptosomal fraction, with a Ki of 1.7 × 10?4 M. Upon entry into the microsomal fraction, 74 per cent of the radioactivity could be recovered as unaltered choline, 10 per cent as phosphorylcholine, 1.5 per cent as acetylcholine and 2.5 per cent as phospholipid. Choline acetyltransferase (EC 2.3.1.6) was assayed with [14C]acetylCoA in synaptosomal fractions prepared from basal ganglia and cerebellum, and in the 31,000 g supernatant fraction of a rat brain homogenate. Enzyme activity was 11-fold greater in the synaptosomal fraction from the basal ganglia than in that from the cerebellum. HC-3 did not inhibit choline acetyltransferase and there was no evidence for acetylation of HC-3. Our findings suggest that choline uptake is a ubiquitous property of membranes in the CNS and cannot serve to distinguish cholinergic nerve endings and their synaptic vesicles.  相似文献   

7.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

8.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

9.
—The ouabain-sensitive K+ uptake and ATPase activities of cultured glioma and neuroblastoma cells were studied. Both cell lines showed ouabain-sensitive K+ uptake which correlated with the level of [Na++ K+]ATPase activity found in the respective total cell homogenate. The glioma cells had a 2.1-fold higher rate of K+ uptake than neuroblastoma cells, and a 2.4-fold higher [Na++ K+]ATPase activity. In the presence of ouabain neuroblastoma cells released K+ and took up Na+ in a 1:1 ratio. These results are compared and contrasted with similar studies on brain tissue and isolated cells. It is suggested that the cultured cell lines may serve as good models for the cation transport properties of their tissue counterparts.  相似文献   

10.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

11.
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by an Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF3 and sodium orthovanadate (Na3VO4) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase due to its sensitivity to BeF3 and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.  相似文献   

12.
Kinetic studies of a dithiothreitol treated membrane ATPase fraction from sugar beet roots led to the following conclusions: 1) In the presence of MgATP, Na+ and K+ stimulate the ATPase activity in different ways following simple Michaelis-Menten kinetics. Thus separate sites for Na+ and K+ are suggested. 2) In the absence of K+, Na+ acts as an uncompetitive modifier raising the apparent Km and Vmax for MgATP. 3) In the absence of Na+, K+ activates non-competitively with respect to MgATP. Thus K+ increases Vmax but does not affect the apparent affinity constant. 4) K+ and Na+ double the rate constants. 5) In the presence of Na+ or K+, Mg2+ in excess acts as a weak inhibitor to Na+ and/or K+ activity. 6) The temperature-activity dependence in the 5–40°C interval shows biphasic Arrhenius plots with the transition point between 15–18°C. The activation energy is lowered at temperatures > 18°C.  相似文献   

13.
Abstract: The activities of certain properties of sodium, potassium-activated adenosine triphosphatase (Na +, K+- ATPase; EC 3.6.1.3) were examined in cultures and peri- karya fractions enriched in rat cerebellar nerve cells or astrocytes, in comparison with preparations from whole immature and adult rat cerebellum and derived synapto- somal fractions, as well as nonneural tissue such as the kidney. The specific activity of Na +, K+-ATPase was markedly higher in the freshly isolated astrocytes than in the nerve cells (3–15-fold greater depending on neuronal cell type). In contrast, the specific activity of the enzyme was about twice as high in the primary neuronal as in the a'strocytic cultures after 14 days in vitro. In membrane preparations from the whole cerebellum, synaptosomal fractions, and total perikarya suspensions the inhibition of enzyme activity by ouabain indicated complex kinetics, which were consistent with the presence of two forms of the Na +, K+-ATPase (apparent Aj values of about 10–7M and 10–4-10–5M, respectively), the high- affinity form accounting for 60–75% of the total activity. The interaction of the enzyme with ouabain was apparently similar in perikarya preparations of granule neurones, Purkinje cells, and astrocytes. Differences were, however, observed in the properties of the Na +,K + - ATPase of cultured neurones and astrocytes. The latter contained predominantly, but not exclusively, an Na+,K+-ATPase with low affinity for ouabain (73% of the total) that is similar to the single enzyme form in the kidney. This form constituted a significantly smaller proportion of the Na +, K+-ATPase in the cultured neuronal preparations (55%). It would appear, therefore, that in membrane fractions from preparations enriched in different separated and cultured neural cell types both the high- and the low-affinity forms of the enzyme, in terms of interaction with ouabain, are expressed. Depending on the class of cells these enzyme forms constituted a different proportion of the total activity, but both forms seemed to be present in every type of cell examined, even after taking into acc.ount the contribution in the enriched preparations of the contaminating cell types. In contrast with the results on the Na+, K+-ATPase activity determined under optimal conditions in preparations derived from disrupted cells, differences could not be detected between the cultured cell types when the effect of ouabain on the uptake of 86Rb into “live cells” was estimated as a measure of in situ ion pump activity. Besides the interaction with ouabain, the K+ dependence of the Na+, K+-ATPase activity was also investigated in crude particulate preparations from cultured cerebellar neurones and astrocytes. Differences were observed as nearly maximal enzyme activity was obtained in the as- trocyte preparations at 1 mM KCl, when only about one- third of the maximal activity was displayed by the cultured nerve cells.  相似文献   

14.
The distribution of [14C]-labelled material into subcellular fractions of 15-day-old rat brain was studied at 2 and 24 h following intraperitoneal and intracerebral injection of [2-14C]sodium acetate, [U-14C]glucose and [2-14C]mevalonic acid respectively. The total quantity of labelled isoprenoids in the brain was, except for glucose, greater when the precursor was administered intracerebrally. The intraperitoneal route was more advantageous in the case of [U-14C]glucose. The subcellular distribution of both labelled total isoprenoid material and sterol was distinct for each labelled precursor. Intracerebrally injected [U-14C]glucose at both time periods studied suggested no dominance of labelling in any fraction. After intraperitoneal injection of [U-14C]glucose the microsomes were more prominently labelled. Both methods of administration of sodium [2-14C]acetate resulted in heavy labelling of the myelin fraction after 24 h. The total labelled isoprenoids resided mainly in the microsomes 24 h after injection of [2-14C]mevalonic acid. Labelled sterol was found to be localized more in the myelin and microsomal fractions for all three precursors than was the labelled total isoprenoids. Depending on the type of experiment to be conducted, each of these precursors can give different results, which must be interpreted accordingly.  相似文献   

15.
Abstract: The molecular basis of the close linkage between oxidative metabolism and acetylcholine (ACh) synthesis is still unclear. We studied this problem in slices and synaptosomes by measurement of ACh synthesis from [U-14C]glucose, and 14CO2 production from [3,4-14C]- and [2-14C]glucose, an index of glucose decarboxylation by the pyruvate dehydrogenase complex (PDH) and the enzymes of the Krebs cycle, respectively. We examined both under conditions that either inhibited (low O2 or antimycin) or stimulated (2,4- dinitrophenol [DNP] or 35 mm -K+) 14CO2 production from [2-14C]- or [3,4-14C]glucose. Incorporation of [U-14C]glucose into ACh was reduced under low O2 and by antimycin or DNP (by 51-93%) and stimulated by 35 mm -K+ (by 30-60%). Under all of these conditions, ACh synthesis and the decarboxylation of [3,4-14C]- and [2-14C]glucose were linearly related (r= 0.741 and 0.579, respectively). The difference in the rate of 14CO2 production from [3,4-14C]- and [2-14C]glucose was used as a measure of the amount of glucose that was not oxidatively decarboxylated (efflux). We found that efflux was reduced (low 02 and antimycin), unchanged (DNP in slices), or increased (DNP in synaptosomes and K+ stimulation in slices) compared with control values under 100% O2. ACh synthesis and efflux were more closely related (r= 0.860) than ACh synthesis and 14CO2 production from variously labeled glucoses.  相似文献   

16.
—The effect of short (4–6 min)‘pulses’ of elevated extracellular potassium ions K0, in the 10–50 mm range, on the efflux of [3H]norepinephrine [3H]NE) and [14C]α-aminoisobutyrate (AIB) has been studied in a superfused neocortical thin slice system. At all the concentrations tested high K0 increases the efflux of both NE and AIB, although thc effects on the former are greater. In the absence of calcium ions, or in the presence of 8 mm -MnCl2, the potassium-stimulated release of both NE and AIB is severely depressed. However, potassium induced NE release is proportional to extracellular calcium ions in the 0–1.5 mm range, while that of AIB does not continue to increase above 0.2 mm -calcium. This permissive role of calcium in amino acid efflux is interpreted as due to changes in the inactivation of membrane sodium conductance.  相似文献   

17.
(1) Synaptosomal fractions from guinea pig neocortical dispersions prepared in sucrose solutions were deposited from saline media as ‘beds’ on nylon bolting cloth. When incubated with 0.5–10 μm -[14C]adenine or adenosine in glucose bicarbonate salines, uptake of 14C from adenosine proceeded at about four times the rate of uptake of [14C]adenine. This contrasted with the relative uptake of the two compounds to neocortical tissue slices or to beds made from mitochondrial fractions, where uptake was similar with the two precursors. Uptake of both precursors to synaptosome beds was much greater than uptake of inosine. (2) Synaptosome beds, [14C]adenosine-loaded, contained 88 per cent of the 14C as 5′-adenine nucleotides, the remainder being present as cyclic AMP, inosine, hypoxanthine and adenosine. When superfused, the 14C output consisted mainly of adenosine, inosine and hypoxanthine, with some 7 per cent of 5′-nucleotides and 4 per cent of cyclic AMP. (3) Electrical pulses and the addition of 50 mm -KCl each increased the efflux of 14C from superfused [14C]adenosine-loaded beds. The superfusates issuing after excitation contained the same 14C-labelled compounds as issued before, with a small increase in the proportional yield of adenosine. The additional output of 14C following electrical pulses was diminished by about 50 per cent by 0.5 μm -tetrodotoxin while that following KCl was not affected; it was however prevented when the superfusing fluids were free of Ca2+.  相似文献   

18.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

19.
A plasma membrane-rich microsome fraction isolated from barley (Hordeum vulgare L. cv. Conquest) roots contained considerable divalent cation-dependent ATPase activity when assayed at 16°C. The maximal divalent cation-stimulation of the apparent basal ATPase activity varied as Ca2+ > Mg2+ > Mn2+= Zn2+ > Co2+ > Ni2+, with all other divalent cations tested being inhibitory. Double reciprocal plots of the Ca2+- and Mg2+-dependent ATPase velocities as a function of substance concentration were nonlinear, suggesting the presence of multiple catalytic sites. Both MgATP2- and CaATP2- served as the true substrates and apparently bind to the same catalytic sites. Free ATP and Ca2+ could inhibitit the Ca2+- and Mg2+-dependent ATPase. Increasing free Mg2+ levels enhanced the affinity of the Mg2+-dependent ATPase for MgATP2-, while slightly inhibiting the Vmax values. Other divalent cation-nucleoside triphosphate complexes produced maximal enzyme velocities equal to or greater than those generated by CaATP2- and MgATP2-. However, the ATPase had significantly higher affinities for CaATP2- and MgATP2-, than for the alternative substrates. The high and low affinity components of the Ca2+- and Mg2+-dependent ATPase exhibited optimal Vmax values at pH 5 and 6, respectively. Analysis of the pH-dependence of the enzyme Km values indicated enzyme-substrate binding with charge neutralization at neutral and alkaline pH's. Nonlinear double reciprocal plots were obtained at all assay temperatures. However, the complexity of the enzyme kinetics became less apparent at the higher assay temperatures. The kinetics of the barley root divalent cation-dependent ATPase activities are discussed in terms of the kinetics of ATPases from other plants and the methods used to obtain them, and compared to the kinetics of ion transport ATPases from animal membranes.  相似文献   

20.
Nerve ending fractions from guinea-pig cerebral cortex contained more than one-half of the Na-K ATPase activity present in the original homogenate. Ethanol at concentrations ranging from 0·043 to 2·57 m inhibited the Na-K ATPase to a significantly greater extent than the Mg-activated ATPase or AChE. The inhibition of membrane-bound Na-K ATPase by ethanol was of the non-competetive type and the activity of Na-K ATPase was increasingly inhibited by alcohols of increasingly longer chain length. The ability of various alcohols to inhibit membrane-bound Na-K ATPase activity was correlated with their lipid solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号