首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Kaur  W J Welch  J Saklatvala 《FEBS letters》1989,258(2):269-273
Interleukin 1 alpha and tumour necrosis factor-alpha stimulated phosphorylation of three 27 kDa phosphoproteins in MRC-5 fibroblasts which was sustained for up to 2 h after adding the cytokines. All three phosphoproteins were immunoprecipitated by a specific antiserum to the small mammalian heat shock protein, hsp 27. The three phosphoproteins from stimulated or control cells contained phosphoserine but not phosphothreonine or phosphotyrosine. Similar increases in phosphorylation of immunoprecipitable 27 kDa proteins were seen in U937 cells stimulated by TNF alpha and Hep G2 cells stimulated by IL1 alpha.  相似文献   

2.
The current progression from genomics to proteomics is fueled by the realization that many properties of proteins (e.g., interactions, post-translational modifications) cannot be predicted from DNA sequence. Although it has become feasible to rapidly identify proteins from crude cell extracts using mass spectrometry after two-dimensional electrophoretic separation, it can be difficult to elucidate low-abundance proteins of interest in the presence of a large excess of relatively abundant proteins. Therefore, for effective proteome analysis it becomes critical to enrich the sample to be analyzed in subfractions of interest. For example, the analysis of protein kinase substrates can be greatly enhanced by enriching the sample of phosphorylated proteins. Although enrichment of phosphotyrosine-containing proteins has been achieved through the use of high-affinity anti-phosphotyrosine antibodies, the enrichment of phosphoserine/threonine-containing proteins has not been routinely possible. Here, we describe a method for enriching phosphoserine/threonine-containing proteins from crude cell extracts, and for subsequently identifying the phosphoproteins and sites of phosphorylation. The method, which involves chemical replacement of the phosphate moieties by affinity tags, should be of widespread utility for defining signaling pathways and control mechanisms that involve phosphorylation or dephosphorylation of serine/threonine residues.  相似文献   

3.
Protein phosphorylation of quiescent human skin fibroblasts was analyzed following stimulation by epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, serum, or 12-O-tetradecanoyl-phorbol-13-acetate. In mitogen-treated cells, a markedly increased phosphorylation of two Mr = 43,000 proteins and two Mr = 41,000 proteins was always detected by two-dimensional gel electrophoresis. More acidic forms were the dominant species and contained phosphotyrosine, phosphoserine, and phosphothreonine, while the basic forms contained phosphotyrosine and phosphoserine. The two Mr = 41,000 proteins were structurally related to each other. All mitogens seemed to stimulate the phosphorylation of each protein with the same site specificity. Induction of the same set of phosphoproteins was observed in mitogen-stimulated rat and mouse fibroblasts as well. These stimulated phosphorylations occurred rapidly, were maximal 5 min after exposure of cells to mitogens, and diminished gradually after 30 min. Mitogen-induced phosphorylation of these proteins was correlated to the extent of mitogen-stimulated DNA synthesis. In addition, such increased protein phosphorylation was not observed in exponentially growing cells, nor in Rous sarcoma virus-transformed rat cells. Thus, phosphorylation of the Mr = 43,000 and 41,000 proteins, which represents a common and specific response of cells to mitogens, could constitute an early event involved in the control of cellular G0----G1 transition.  相似文献   

4.
The widely accepted hypothesis of vanadate action on cells postulates that this ion inhibits protein phosphatase(s) that dephosphorylates protein phosphotyrosine residues. This inhibition causes tyrosine hyperphosphorylation of cell proteins followed by changes in physiological action of phosphoproteins resulting in stimulation of cell proliferation, expression of protooncogenes, and transient cell transformation. We have found that treatment of human ovary carcinoma (CaOv) cells with vanadate causes the increase in total protein phosphorylation from 1.5- to 2.0-fold whereas the ratio between phosphoserine, phosphothreonine, and phosphotyrosine content remains unchanged. At the same time, enhancement of c-myc gene expression (not c-fos) was observed. Hence, the increase in the ratio of phosphotyrosine to phosphoserine and phosphothreonine is not an obligatory intermediate stage before vanadate-dependent activation of c-myc expression.  相似文献   

5.
P Kaur  J Saklatvala 《FEBS letters》1988,241(1-2):6-10
Interleukin 1 (IL1) or tumour necrosis factor (TNF) stimulated phosphorylation of a triad of 27 kDa phosphoproteins (pI 6.0, 5.7 and 5.5) in human dermal fibroblasts. The change was dependent on the dose of cytokine in the range 0.1-20 ng, was detectable between 3 and 5 min after stimulation and was maximal by 10 min. The proteins were found in the cytosol after subcellular fractionation. The 32P was removed from them by alkali, indicating the presence of phosphoserine and/or phosphothreonine. The results suggest that early changes in serine/threonine protein kinase activity may be involved in responses of fibroblasts to IL1 and TNF.  相似文献   

6.
To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.  相似文献   

7.
The differentiation of skeletal muscle has been associated with altered phosphorylation status of individual proteins. However, a global analysis of protein phosphorylation during myogenesis has yet to be undertaken. Here, we report the identification of over 130 putative phosphoproteins from murine C2C12 muscle cells. Cell extracts were fractionated on phosphoprotein enrichment columns and the resulting proteins were detected by two-dimensional gel electrophoresis and silver stain, and identified by liquid chromatography coupled to electrospray tandem mass spectrometry. The early differentiation of C2C12 myoblasts was found to be accompanied by changes in the phosphorylation or expression of numerous proteins including cytoskeletal, heat shock and signaling proteins, the pp32 family of nuclear phosphoproteins, several disease-associated gene products and other characterized and uncharacterized proteins.  相似文献   

8.
The present studies demonstrate that matrix Gla protein (MGP), a 10-kDa vitamin K-dependent protein, is phosphorylated at 3 serine residues near its N-terminus. Phosphoserine was identified at residues 3, 6, and 9 of bovine, human, rat, and lamb MGP by N-terminal protein sequencing. All 3 modified serines are in tandemly repeated Ser-X-Glu sequences. Two of the serines phosphorylated in shark MGP, residues 2 and 5, also have glutamate residues in the n + 2 position in tandemly repeated Ser-X-Glu sequences, whereas the third, shark residue 3, would acquire an acidic phosphoserine in the n + 2 position upon phosphorylation of serine 5. The recognition motif found for MGP phosphorylation, Ser-X-Glu/Ser(P), has been seen previously in milk caseins, salivary proteins, and a number of regulatory peptides. A review of the literature has revealed an intriguing dichotomy in the extent of serine phosphorylation among secreted proteins that are phosphorylated at Ser-X-Glu/Ser(P) sequences. Those phosphoproteins secreted into milk or saliva are fully phosphorylated at each target serine, whereas phosphoproteins secreted into the extracellular environment of cells are partially phosphorylated at target serine residues, as we show here for MGP and others have shown for regulatory peptides and the insulin-like growth factor binding protein 1. We propose that the extent of serine phosphorylation regulates the activity of proteins secreted into the extracellular environment of cells, and that partial phosphorylation can therefore be explained by the need to ensure that the phosphoprotein be poised to gain or lose activity with regulated changes in phosphorylation status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Sui S  Wang J  Yang B  Song L  Zhang J  Chen M  Liu J  Lu Z  Cai Y  Chen S  Bi W  Zhu Y  He F  Qian X 《Proteomics》2008,8(10):2024-2034
The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ.  相似文献   

10.
Although proteins phosphorylated on tyrosine residues can be enriched by immunoprecipitation with anti-phosphotyrosine antibodies, it has been difficult to identify proteins that are phosphorylated on serine/threonine residues because of lack of immunoprecipitating antibodies. In this report, we describe several antibodies that recognize phosphoserine/phosphothreonine-containing proteins by Western blotting. Importantly, these antibodies can be used to enrich for proteins phosphorylated on serine/threonine residues by immunoprecipitation, as well. Using these antibodies, we have immunoprecipitated proteins from untreated cells or those treated with calyculin A, a serine/threonine phosphatase inhibitor. Mass spectrometry-based analysis of bands from one-dimensional gels that were specifically observed in calyculin A-treated samples resulted in identification of several known serine/threonine-phosphorylated proteins including drebrin 1, alpha-actinin 4, and filamin-1. We also identified a protein, poly(A)-binding protein 2, which was previously not known to be phosphorylated, in addition to a novel protein without any obvious domains that we designate as Frigg. Frigg is widely expressed and was demonstrated to be a protein kinase A substrate in vitro. We identified several in vivo phosphorylation sites by tandem mass spectrometry using Frigg protein immunoprecipitated from cells. Our method should be applicable as a generic strategy for enrichment and identification of serine/threonine-phosphorylated substrates in signal transduction pathways.  相似文献   

11.
Platelet-derived growth factor (PDGF) stimulates the phosphorylation of proteins at tyrosine when added to quiescent 3T3 cells, as evidenced by the increase in the amount of phosphotyrosine, relative to phosphoserine and phosphothreonine, in cellular proteins. The increase was detected within 1 min of adding PDGF and was maximal by 5 min. This effect showed the same dependence on PDGF concentration as did association of 125I-PDGF with the cells. In different 3T3 cell lines the magnitude of the increase was approximately proportional to the number of PDGF receptors per cell. A number of proteins phosphorylated at tyrosine in response to PDGF have been detected by two-dimensional gel electrophoresis. They include a pair of related 45 kilodalton phosphoproteins, a pair of related 43 kilodalton phosphoproteins and a 42 kilodalton phosphoprotein. Similar changes were noted when quiescent 3T3 cells were incubated with epidermal growth factor. Possibly, these phosphoproteins are primary substrates of the tyrosine protein kinases activated by the receptors for PDGF and epidermal growth factor, and are involved in physiological effects common to the two growth factors.  相似文献   

12.
Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.  相似文献   

13.
Protein phosphorylation was studied in primary cultures of thyroid epithelial cells after the addition of different mitogens: thyrotropin (TSH) acting through cyclic AMP, epidermal growth factor (EGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA). EGF or TPA increased the phosphorylation of five common polypeptides. Among these, two 42-kilodalton proteins contained phosphotyrosine and phosphoserine with or without phosphothreonine. Their characteristics suggested that they are similar to the two 42-kilodalton target proteins for tyrosine protein phosphorylation demonstrated in fibroblasts in response to mitogens. No common phosphorylated proteins were detected in TSH-treated cells and in EGF- or TPA-treated cells. The differences in the protein phosphorylation patterns in response to TSH, EGF, and TPA suggested that the newly emerging cyclic AMP-mediated mitogenic pathway is distinct from the better known growth factor- and tumor promoter-induced pathways.  相似文献   

14.
Protein phosphorylation was investigated in the bacterium Acinetobacter calcoaceticus both in vivo and in vitro. In cells grown with [32P]orthophosphate, several radioactive phosphoproteins were detected by gel electrophoresis and autoradiography. These proteins were shown to contain phosphoserine, phosphothreonine, and a relatively large proportion of phosphotyrosine residues. Incubation of cellular extracts with [gamma-32P] ATP also resulted in the phosphorylation of several proteins. At least four of them, namely an 81-kDa protein, were modified at tyrosine. No protein labeling occurred when extracts were incubated with [gamma-32P] ATP or [14C]ATP. Moreover, phosphoproteins were insensitive to snake venom phosphodiesterase. All together these results indicate that A. calcoaceticus harbors different protein kinases including a protein-tyrosine kinase activity. Further analysis of this activity showed that it has little, if any, functional similarity with eukaryotic protein-tyrosine kinases.  相似文献   

15.
Fabczak H  Sobierajska K  Fabczak S 《Protist》2004,155(2):181-192
Examination of ciliate Blepharisma japonicum whole cell lysates with an antibody against phosphoserine and in vivo labeling of cells with radioactive phosphate revealed that the photophobic response in the ciliate is accompanied by a rapid dephosphorylation of a 28 kDa protein and an enhanced phosphorylation of a 46 kDa protein. Analysis with antibodies raised against rat phosducin or human phosducin-like proteins, identified one major protein of a molecular weight of 28 kDa, and two protein bands of 40 kDa and 93 kDa. While the identified ciliate phosducin is phosphorylated in a light-dependent manner, both phosducin-like proteins exhibit no detectable dependence of phosphorylation upon illumination. An immunoprecipitation assay also showed that the ciliate phosducin is indeed phosphorylated on a serine residue and exists in a phosphorylated form in darkness and that its dephosphorylation occurs in light. Immunocytochemical experiments showed that protozoan phosducin and phosducin-like proteins are localized almost uniformly within the cytoplasm of cells adapted to darkness. Cell exposure to light caused a pronounced displacement of the cell phosducin to the vicinity of the plasma membrane; however, no translocation of phosducin-like proteins was observed upon cell illumination. The obtained results are the first demonstration of the presence and morphological localization of a possible phosducin and phosducin-like proteins in ciliate protists. Phosducin and phosducin-like proteins were found to bind and sequester the betagamma-subunits of G-proteins with implications for regulation of G-protein-mediated signaling pathways in various eukaryotic cells. The findings presented in this study suggest that the identified phosphoproteins in photosensitive Blepharisma japonicum may also participate in the regulation of the efficiency of sensory transduction, resulting in the motile photophobic response in this cell.  相似文献   

16.
We here studied the protein kinase activity and in vitro phosphorylable sites of non-histone nuclear proteins, 0.4 M NaCl extracts (mostly chromosomal proteins) from chick embryo fibroblasts (CEF), infected or not with a Schmidt Ruppin strain subgroup A of Rous sarcoma virus (RSV).The infection and transformation of chick fibroblasts by RSV induced an increase in kinase activity and endogenous phosphorylation of non-histone chromosomal (NHC) proteins. The stimulation, by a change of medium, of the proliferation of dense cultures of normal chick fibroblasts also induced an increase in the kinase activity and endogenous phosphorylation of NHC proteins.However, two-dimensional gel electrophoresis of the 32P-phosphorylated proteins showed that stimulation due to a change of medium and that due to the expression of transformation were very different. The stimulation by a change of medium increased to a greater or lesser extent the phosphorylation of the different NHC proteins, with no fundamental variations in the pattern of protein phosphorylation. In contrast, RSV infection induced significant changes in the pattern of protein phosphorylation. One of the most striking feature was the large increase of amount and phosphorylation of high molecular weight (HMW) proteins in particular of phosphoproteins having an evaluated molecular weight (MW) of 78 K and 82 K and pI>8.2.The percent of phosphotyrosine residues in NHC proteins was clearly increased when the proteins were extracted from transformed cells instead of normal cells. But the alkaline treatment of two-dimensional gel electrophoresis indicated that the 80 K phosphoproteins did not contain phosphotyrosine residues, and thus cannot be considered as substrates for pp60src kinase.  相似文献   

17.
Determination of phosphorylation sites in proteins is usually accomplished using [gamma-32P]ATP. For low-abundance phosphoproteins, in vivo and intact cell studies usually require millicurie levels of 32P for a single experiment, making multiple experiments prohibitive. Here we describe a low picomole sensitivity, nonradioisotopic, high-throughput method for tracing phosphorylation sites in proteins and peptides. The method is based on in situ enzyme-linked immunosorbent assay (ELISA) plate biotinylation of nonphospho- and phosphopeptides, streptavidin capture, and ELISA detection using recently available anti-phospho-Thr and anti-phospho-Ser antibodies.  相似文献   

18.
Two antipeptide antibodies, one against the peptide corresponding to residues 307-327 (alpha Y91) and one against the peptide corresponding to the C-terminal portion (alpha C92) of the deduced amino acid sequence of the extracellular signal-regulated kinase 1 (ERK1), precipitated two 41-kDa and/or two 43-kDa phospho-proteins from mitogen-stimulated Swiss 3T3 cells. Electrophoretic mobilities on two-dimensional gels of the immunoprecipitated 41- and 43-kDa phosphoproteins were similar to those of the 41- and 43-kDa cytosol proteins, whose increased tyrosine phosphorylation we and others had originally identified in various mitogen-stimulated cells (Cooper, J. A., Sefton, B. M., and Hunter, T. (1984) Mol. Cell. Biol. 4, 30-37; Kohno, M. (1985) J. Biol. Chem. 260, 1771-1779); phosphopeptide map analysis revealed that they were respectively identical molecules. All those phosphoproteins contained phosphotyrosine, and the more acidic forms contained additional phosphothreonine. Immunoprecipitated 41- and 43-kDa phosphoproteins had serine/threonine kinase activity toward myelin basic protein (MBP) and microtuble-associated protein 2 (MAP2). With the combination of two-dimensional gel electrophoresis and the kinase assay in MBP-containing polyacrylamide gels of the alpha Y91 immunoprecipitates, with or without phosphatase 2A treatment, we showed that only their acidic forms were active. These results clearly indicate that 41- and 43-kDa proteins, the increased tyrosine phosphorylation of which is rapidly and commonly induced by mitogen stimulation of fibroblasts, are family members of ERKs/MAP2 kinases and that phosphorylation both on tyrosine and threonine residues is necessary for their activation.  相似文献   

19.
Cilia are disassembled prior to cell division, which is proposed to regulate proper cell cycle progression. The signaling pathways that regulate cilia disassembly are not well-understood. Recent biochemical and genetic data demonstrate that protein phosphorylation plays important roles in cilia disassembly. Here, we analyzed the phosphoproteins in the membrane/matrix fraction of flagella undergoing shortening as well as flagella from steady state cells of Chlamydomonas. The phosphopeptides were enriched by a combination of IMAC and titanium dioxide chromatography with a strategy of sequential elution from IMAC (SIMAC) and analyzed by tandem mass spectrometry. A total of 224 phosphoproteins derived from 1296 spectral counts of phosphopeptides were identified. Among the identified phosphoproteins are flagellar motility proteins such as outer dynein arm, intraflagellar transport proteins as well as signaling molecules including protein kinases, phosphatases, G proteins, and ion channels. Eighty-nine of these phosphoproteins were only detected in shortening flagella, whereas 29 were solely in flagella of steady growing cells, indicating dramatic changes of protein phosphorylation during flagellar shortening. Our data indicates that protein phosphorylation is a key event in flagellar disassembly, and paves the way for further study of flagellar assembly and disassembly controlled by protein phosphorylation.  相似文献   

20.
Although the important role of protein phosphorylation in insulin signaling networks is well recognized, its analysis in vivo has not been pursued in a systematic fashion through proteome-wide studies. Here we undertake a global analysis of insulin-induced changes in the rat liver cytoplasmic and endosomal phosphoproteome by sequential enrichment of phosphoproteins and phosphopeptides. After subcellular fractionation proteins were denatured and loaded onto iminodiacetic acid-modified Sepharose with immobilized Al3? ions (IMAC-Al resin). Retained phosphoproteins were eluted with 50 mM phosphate and proteolytically digested. The digest was then loaded onto an IMAC-Al resin and phosphopeptides were eluted with 50 mM phosphate, and resolved by 2-dimensional liquid chromatography, which combined offline weak anion exchange and online reverse phase separations. The peptides were identified by tandem mass spectrometry, which also detected the phosphorylation sites. Non-phosphorylated peptides found in the flow-through of the IMAC-Al columns were also analyzed providing complementary information for protein identification. In this study we enriched phosphopeptides to ~85% purity and identified 1456 phosphopeptides from 604 liver phosphoproteins. Eighty-nine phosphosites including 45 novel ones in 83 proteins involved in vesicular transport, metabolism, cell motility and structure, gene expression and various signaling pathways were changed in response to insulin treatment. Together these findings could provide potential new markers for evaluating insulin action and resistance in obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号