首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

2.
Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.  相似文献   

3.
4.
Cellular brassinolide (BL) levels regulate the development of Brassica napus microspore-derived embryos (MDEs). Synthesis and degradation of nucleotides were measured on developing MDEs treated with BL or brassinazole (BrZ), a biosynthetic inhibitor of BL. Purine metabolism was investigated by following the metabolic fate of 14C-labelled adenine and adenosine, substrates of the salvage pathway, and inosine, an intermediate of both salvage and degradation pathways. For pyrimidine, orotic acid, uridine and uracil were employed as markers for the de novo (orotic acid), salvage (uridine and uracil), and degradation (uracil) pathways. Our results indicate that utilization of adenine, adenosine, and uridine for nucleotides and nucleic acids increased significantly in BL-treated embryos at day 15 and remained high throughout the culture period. These metabolic changes were ascribed to the activities of the respective salvage enzymes: adenine phosphoribosyltransferase (EC 2.4.2.7), adenosine kinase (EC 2.7.1.20), and uridine kinase (EC 2.7.1.48), which were induced by BL applications. The BL promotion of salvage synthesis was accompanied by a reduction in the activities of the degradation pathways, suggesting the presence of competitive anabolic and catabolic mechanisms utilizing the labelled precursors. In BrZ-treated embryos, with depleted BL levels, the salvage activity of both purine and pyrimidine nucleotides was reduced and this was associated to structural abnormalities and poor embryonic performance. In these embryos, the activities of major salvage enzymes were consistently lower to those measured in their control (untreated) counterparts.  相似文献   

5.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

6.
Summary Changes in pyrimidine metabolism were investigated in germinating white spruce somatic embryos by following the metabolic fate of [2-14C]uracil and [2-14C]uridine, intermediate metabolites of the salvage pathway and [6-14C]orotic acid, a central metabolite of the de novo. nucleotide biosynthesis. An active uridine salvage was found to be responsible for the enlargement of the nucleotide pool at the inception of germination. Uridine kinase, which catalyzes the conversion of uridine to uridine monophosphate (UMP), was found to be very active in partially dried embryos and during the early phases of imbibition. The contribution of uracil to the nucleotide pool was negligible since a large amount of radioactivity from [2-14C]uracil was recovered in degradation products. As germination progressed, the decline of the uridine salvage pathway was concomitant with an increase of the de novo biosynthetic pathway. The central enzyme of the de novo pathway, orotate phosphoribosyltransferase, showed increased activity and contributed to the larger amount of orotate being anabolized. These results suggest that although both the salvage and de novo pathways operate in germinating white spruce somatic embryos, their contribution to the enlargement of the nucleotide pool appears tightly regulated as germination progresses.  相似文献   

7.
Pyrimidine nucleotide metabolism was studied in tobacco callus cultured for 21days under shoot-forming (SF) and non-shoot-forming (NSF) conditions by following the metabolic fate of orotic acid, a precursor of the de novo pathway, and uridine and uracil, intermediates of the salvage and degradation pathways respectively. Nucleic acid synthesis was also investigated by measuring the incorporation of labeled thymidine into different cellular components. Our results indicate that with respect to nucleotide metabolism, the organogenic process in tobacco can be divided in two "metabolic phases": a de novo phase followed by a salvage phase. The initial stages of meristemoid formation during tobacco organogenesis (up to day 8) are characterized by a heavy utilization of orotic acid into nucleotides and nucleic acids. Utilization of this intermediate for the de novo synthesis of nucleotides, which is limited in NSF tissue, is mainly due to the activity of orotate phosphoribosyltransferase (OPRT), which increases in tissue cultured under SF conditions. After day 8, nucleotide synthesis during shoot growth seems to be mainly due to the salvage activity of both uridine and uracil. Both intermediates are preferentially utilized in SF tissue for the formation of nucleotides and nucleic acids through the activities of their respective salvage enzymes: uridine kinase (URK), and uracil phosphoribosyltransferase (UPRT). Metabolic studies on thymidine indicate that in SF tissue maximal nucleic acid synthesis occurs at day 4, in support of the initiation of meristemoid formation. Overall these results suggest that the organogenic process in tobacco is underlined by precise fluctuations in pyrimidine metabolism which delineate structural events culminating in shoot formation.  相似文献   

8.
The concentration of uridine in the media of cultured L1210 cells was maintained within the concentration range found in plasma (1 to 10 microM) to determine if such concentrations are sufficient to satisfy the pyrimidine requirements of a population of dividing cells and to determine if cells utilize de novo and/or salvage pathways when exposed to plasma concentrations of uridine. When cells were incubated in the presence of N-(phosphonacetyl)-L-aspartate to block de novo biosynthesis, plasma concentrations of uridine maintained normal cell growth. De novo pyrimidine biosynthesis, as determined by [14C]sodium bicarbonate incorporation into uracil nucleotides, was affected by the low concentrations of uridine found in the plasma. Below 1 microM uridine, de novo biosynthesis was not affected; between 3 and 5 microM uridine, de novo biosynthesis was inhibited by approximately 50%; and above 12 microM uridine, de novo biosynthesis was inhibited by greater than 95%. Inhibition of de novo biosynthesis correlated with an increase in the uracil nucleotide pool. The de novo pathway was much more sensitive to the uracil nucleotide pool size than was the salvage pathway, such that when de novo biosynthesis was inhibited by greater than 95% the uracil nucleotide pool continued to expand and the cells continued to take up [14C]uridine. Thus, the pyrimidine requirements of cultured L1210 cells can be met by concentrations of uridine found in the plasma and, when exposed to such physiologic concentrations, L1210 cells decrease their dependency on de novo biosynthesis and utilize their salvage pathway. Circulating uridine, therefore, may be of physiologic importance and could be an important determinant in anti-pyrimidine chemotherapy.  相似文献   

9.
10.
Gravid Angiostrongylus cantonensis can utilize radiolabelled bicarbonate, orotate, uracil, uridine and cytidine but not cytosine, thymine and thymidine for the synthesis of RNA and DNA. In cell-free extracts of the worm, a phosphoribosyltransferase was shown to convert orotate to OMP and uracil to UMP. A similar reaction was not observed with cytosine and thymine. Uridine was readily phosphorylated by a kinase but a similar reaction for thymidine and deoxyuridine was not found. Cytidine could be phosphorylated by a kinase or be deaminated by a deaminase to uridine. No deaminase for cytosine was detected. There was also no phosphotransferase activity for pyrimidine nucleosides in the cytosolic or membrane fractions. Pyrimidine nucleosides were, in general, converted to the bases by a phosphorylase reaction but only uracil and thymine could form nucleosides in the reverse reaction. The activity of thymidylate synthetase was also measured. These results indicate that the nematode synthesizes pyrimidine nucleotides by de novo synthesis and by utilization of uridine and uracil and that cytosine and thymine nucleotides are formed mainly through UMP. The thymidylate synthetase reaction appears to be vital for the growth of the parasite.  相似文献   

11.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

12.
Protozoan parasites of the Leishmania genus express the metabolic machinery to synthesize pyrimidine nucleotides via both de novo and salvage pathways. To evaluate the relative contributions of pyrimidine biosynthesis and salvage to pyrimidine homeostasis in both life cycle stages of Leishmania donovani, individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme in pyrimidine biosynthesis, uracil phosphoribosyltransferase (UPRT), a salvage enzyme, or both CPS and UPRT were constructed. The Δcps lesion conferred pyrimidine auxotrophy and a growth requirement for medium supplementation with one of a plethora of pyrimidine nucleosides or nucleobases, although only dihydroorotate or orotate could circumvent the pyrimidine auxotrophy of the Δcps/Δuprt double knockout. The Δuprt null mutant was prototrophic for pyrimidines but could not salvage uracil or any pyrimidine nucleoside. The capability of the Δcps parasites to infect mice was somewhat diminished but still robust, indicating active pyrimidine salvage by the amastigote form of the parasite, but the Δcps/Δuprt mutant was completely attenuated with no persistent parasites detected after a 4-week infection. Complementation of the Δcps/Δuprt clone with either CPS or UPRT restored infectivity. These data establish that an intact pyrimidine biosynthesis pathway is essential for the growth of the promastigote form of L. donovani in culture, that all uracil and pyrimidine nucleoside salvage in the parasite is mediated by UPRT, and that both the biosynthetic and salvage pathways contribute to a robust infection of the mammalian host by the amastigote. These findings impact potential therapeutic design and vaccine strategies for visceral leishmaniasis.  相似文献   

13.
Gas chromatographic/mass spectrometric methods for the measurement of the flux through the de novo pyrimidine biosynthetic pathway by quantitating the incorporation of [13C]bicarbonate and 13CO2 into the uracil nucleotide pool in L1210 tumors are reported. Simultaneous measurements of the incorporation of [13C]bicarbonate and the more commonly used [14C]bicarbonate into uridine of L1210 cells in vitro showed that the two methods were comparable. A modification of the method was applied to in vivo studies where the incorporation of 13CO2 into the uracil nucleotide pool of L1210 tumors in mice was quantitated. The measurements were used to determine changes in the flux through the de novo pyrimidine pathway in animals pretreated with known inhibitors of the pathway. A comparison of control animals with those pretreated with 6-azauridine, acivicin, and pyrazofurin resulted in mean percentage inhibitions of 87, 95, and 94%, respectively. This technique should allow investigation of the respective contributions of salvage and de novo synthesis in the formation of pyrimidines in vivo and the effects of agents designed as enzyme inhibitors of the de novo pathway.  相似文献   

14.
Summary Callus cultures derived from roots of summer squash (Cucurbita pepo L. c.v. Early Prolific Straightneck) grown in the dark at 27° C on Murashige and Skoog medium supplemented per liter with 30 g sucrose, 100 mg myo-inositol, 10 mg indole-butyric acid, 2 mg glycine, 1 mg thiamin, 0.5 mg nicotinic acid, 0.5 mg pyridoxine, and 2 g Gelrite were capable of synthesizing pyrimidine nucleotides both de novo and through salvage of existing pyrimidine nucleotides and bases. Evidence that the de novo biosynthesis of pyrimidine nucleotides proceeded via the orotate pathway in this tissue included: (a) demonstration of the incorporation of NaH14CO3 and [14C6]orotic acid into uridine nucleotides (ΣUMP), and (b) demonstration that the addition of 6-azauridine blocked the incorporation of these two precursors into ΣUMP. The synthesis of pyrimidine nucleotides through the salvage of existing pyrimidine bases and ribosides was demonstrated by measuring the incorporation of [14C2]uracil and [14C2]uridine into ΣUMP. Salvage of both [14C2]uracil and [14C2]uridine was sensitive to inhibition by 6-azauridine or one of its metabolites. The orotic acid pathway for the de novo biosynthesis of pyrimidine nucleotides was demonstrated to be sensitive to end-product inhibition. Uridine, or one of its metabolites, inhibited the incorporation of NaH14CO3, but not [14C6]orotic acid, into ΣUMP. Evidence is presented suggesting that Aspartate carbomoyltransferase is the site of feedback control. This work was supported by the Citrus Research Center and Agricultural Experiment Station of the University of California, Riverside, CA. Submitted in partial fulfillment of the requirements of the University of California for the Master of Science degree in botany (F-F.L.)  相似文献   

15.
16.
The imposition of a partial drying treatment (PDT) on mature white spruce somatic embryos is a necessary step for successful germination and embryo conversion into plantlets. Purine and pyrimidine metabolism was investigated during the PDT of white spruce somatic embryos by following the metabolic fate of 14C-labeled adenine, adenosine, and inosine, as purine intermediates, and orotic acid, uridine, and uracil, as pyrimidine intermediates, as well as examining the activities of key enzymes. Both the salvage and the degradation pathways of purines were operative in partially dried embryos. Adenine and adenosine were extensively salvaged by the enzymes adenine phosphoribosyltransferase and adenosine kinase, respectively. The activity of the former enzyme increased during the PDT. In both mature and partially dried embryos, a large proportion of inosine was recovered as degradation products. The de novo pathway of pyrimidine nucleotide biosynthesis, estimated by the incorporation of orotic acid into the nucleotides and nucleic acids, was high at the end of the maturation period and declined during the PDT. Uridine was the main substrate for the pyrimidine salvage pathway, since a large proportion of uracil was recovered as degradation products, i.e. CO2 and β - ureidopropionic acid in both mature and partially dried embryos. Uridine was mainly salvaged by uridine kinase, whose activity was found to increase during the PDT. Taken together these results indicate that the PDT might be required for increasing the activity of adenine and uridine salvage enzymes, which could contribute to the enlargement of the nucleotide pool required at the onset of germination.  相似文献   

17.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

18.
The arginine-independent, de novo biosynthetic pathway of pyrimidines in Dictyostelium discoideum is initiated by a class II carbamoyl-phosphate synthetase (EC 6.3.5.5) specific for pyrimidine biosynthesis which utilized L-glutamine as its N donor and was partially inhibited by both UTP and CTP. The second step in the de novo pathway was provided by an unregulated aspartate transcarbamoylase (EC 2.1.3.2) which primarily appeared as a multimeric enzyme of 105 kilodaltons. The next enzyme, dihydroorotase (EC 3.5.2.3), was approximately 90-100 kilodaltons. Although the early enzymatic activities of the pyrimidine pathway appeared to reside in independent protein complexes, various unstable molecular species were observed. These structural variants may represent proteolytic fragments of a multienzyme complex. In addition to de novo synthesis, the amoeba demonstrated the capacity for salvage utilization of uracil, uridine, and cytidine. Upon starvation on a solid substratum, axenically grown amoebas began a concerted developmental program accompanied by a restructuring of nucleotide metabolism. The absolute levels of the ribonucleotide pools droppedby 98% within 30 h; however, both the adenylate energy charge and the GTP/ATP ratios were maintained for 50 h after the initiation of development. The maintenance of these metabolic energy parameters required the tight cell-cell contact necessary for development, and the capacity for pyrimidine metabolism was maintained throughout developmental morphogenesis.  相似文献   

19.
Changes in pyrimidine metabolism were investigated during programmed cell death (PCD) of tobacco BY-2 cells, induced by a simultaneous increase in the endogenous levels of nitric oxide (NO) and hydrogen peroxide. The de novo synthesis of pyrimidine nucleotides was estimated by following the metabolic fate of the (14)C-labelled orotic acid, whereas the rates of salvage and degradation pathways were studied by measuring the respective incorporation of (14)C-labelled uridine and uracil under different treatments. Nucleic acid metabolism was also examined using labelled thymidine as a marker. The results show that specific alterations in the balance of pyrimidine nucleotide synthesis, which include a decreased rate of salvage activity of uracil and uridine and increased salvage activity of thymidine, represent a metabolic switch that establishes proper cellular conditions for the induction of PCD. In particular, a reduction in the utilization of uracil for salvage products occurs very early during PCD, before the appearance of typical cytological features of the death programme, thus representing an early metabolic marker for PCD. These changes are strictly associated with PCD, since they do not occur if NO or hydrogen peroxide are increased individually, or if actinomycin, which inhibits the death programme, is added into the medium in the presence of NO and hydrogen peroxide. The possible roles of these fluctuations in pyrimidine metabolism on the cellular nucleotide pool are discussed in relation to the induction of cell death.  相似文献   

20.
The five de novo enzyme activities unique to the pyrimidine biosynthetic pathway were found to be present in Pseudomonas pseudoalcaligenes ATCC 17440. A mutant strain with 31-fold reduced orotate phosphoribosyltransferase (encoded by pyrE) activity was isolated that exhibited a pyrimidine requirement for uracil or cytosine. Uptake of the nucleosides uridine or cytidine by wild-type or mutant cells was not detectable; explaining the inability of the mutant strain to utilize either nucleoside to satisfy its pyrimidine requirement. When the wildtype strain was grown in the presence of uracil, the activities of the five de novo enzymes were depressed. Pyrimidine limitation of the mutant strain led to the increase in aspartate transcarbamoylase and dihydroorotate dehydrogenase activities by more than 3-fold, and dihydroorotase and orotidine 5-monophosphate decarboxylase activities about 1.5-fold, as compared to growth with excess uracil. It appeared that the syntheses of the de novo enzymes were regulated by pyrimidines. In vitro regulation of aspartate transcarbamoylase activity in P. pseudoalcaligenes ATCC 17440 was investigated using saturating substrate concentrations; transcarbamoylase activity was inhibited by Pi, PPi, uridine ribonucleotides, ADP, ATP, GDP, GTP, CDP, and CTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号