首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The human reduced folate carrier (hRFC) mediates the membrane transport of reduced folates and classical anti-folates into mammalian cells. RFC is characterized by 12 transmembrane domains (TMDs), internally oriented N and C termini, and a large central linker connecting TMDs 1-6 and 7-12. By co-expression and N-hydroxysuccinimide methotrexate (Mtx) radioaffinity labeling of hRFC TMD 1-6 and TMD 7-12 half-molecules, combined with endoproteinase GluC digestion, a substrate binding domain was previously localized to within TMDs 8-12 (Witt, T. L., Stapels, S. E., and Matherly, L. H. (2004) J. Biol. Chem. 279, 46755-46763). In this report, this region was further refined to TMDs 11-12 by digestion with 2-nitro-5-thiocyanatobenzoic acid. A transportcompetent cysteine-less hRFC was used as a template to prepare single cysteine-replacement mutant constructs in which each residue from Glu-394 to Asp-420 of TMD 11 and Tyr-435 to His-457 of TMD 12 was replaced individually by a cysteine. The mutant constructs were transfected into hRFC-null HeLa cells. Most of the 50 single cysteine-substituted constructs were expressed at high levels on Western blots. With the exception of G401C hRFC, all mutants were active for Mtx transport. Treatment with sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) had no effect on hRFC activity for all of the cysteine mutants within TMD 12 and for the majority of the cysteine mutants within TMD 11. However, MTSES inhibited Mtx uptake by the T404C, A407C, T408C, T412C, F416C, I417C, V418C, and S419C mutants by 25-65%. Losses of activity by MTSES treatment for T404C, A407C, T412C, and I417C hRFCs were appreciably reversed in the presence of excess leucovorin, a hRFC substrate. Our results strongly suggest that residues within TMD 11 are likely critical structural and/or functional components of the putative hRFC transmembrane channel for anionic folate and anti-folate substrates.  相似文献   

2.
The reduced folate carrier (RFC) is the major transport system for folates in mammals. We previously demonstrated the existence of human RFC (hRFC) homo-oligomers and established the importance of these higher order structures to intracellular trafficking and carrier function. In this report, we examined the operational significance of hRFC oligomerization and the minimal functional unit for transport. In negative dominance experiments, multimeric transporters composed of different ratios of active (either wild type (WT) or cysteine-less (CLFL)) and inactive (either inherently inactive (Y281L and R373A) due to mutation, or resulting from inactivation of the Y126C mutant by (2-sulfonatoethyl) methanethiosulfonate (MTSES)) hRFC monomers were expressed in hRFC-null HeLa (R5) cells, and residual WT or CLFL activity was measured. In either case, residual transport activity with increasing levels of inactive mutant correlated linearly with the fraction of WT or CLFL hRFC in plasma membranes. When active covalent hRFC dimers, generated by fusing CLFL and Y126C monomers, were expressed in R5 cells and treated with MTSES, transport activity of the CLFL-CLFL dimer was unaffected, whereas Y126C-Y126C was potently (64%) inhibited; heterodimeric CLFL-Y126C and Y126C-CLFL were only partly (27 and 23%, respectively) inhibited by MTSES. In contrast to Y126C-Y126C, trans-stimulation of methotrexate uptake by intracellular folates for Y126C-CLFL and CLFL-Y126C was nominally affected by MTSES. Collectively, these results strongly support the notion that each hRFC monomer comprises a single translocation pathway for anionic folate substrates and functions independently of other monomers (i.e. despite an oligomeric structure, hRFC functions as a monomer).  相似文献   

3.
The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [3H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2–3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding.  相似文献   

4.
Reduced folates such as 5-methyl tetrahydrofolate and classical antifolates such as methotrexate are actively transported into mammalian cells by the reduced folate carrier (RFC). RFC is characterized by 12 stretches of mostly hydrophobic, alpha-helix-promoting amino acids, internally oriented N and C termini, and a large central linker connecting transmembrane domains (TMDs) 1-6 and 7-12. Previous studies showed that deletion of the majority of the central loop domain between TMDs 6 and 7 abolished transport, but this segment could be replaced with mostly non-homologous sequence from the SLC19A2 thiamine transporter to restore transport function. In this report, we expressed RFC from separate TMD1-6 and TMD7-12 RFC half-molecule constructs, each with a unique epitope tag, in RFC-null K562 cells to restore transport activity. Restored transport exhibited characteristic transport kinetics for methotrexate, a capacity for trans-stimulation by pretreatment with leucovorin, and inhibition by N-hydroxysuccinimide methotrexate, a documented affinity inhibitor of RFC. The TMD1-6 half-molecule migrated on SDS gels as a 38-58 kDa glycosylated species and was converted to 27 kDa by N-glycosidase F or tunicamycin treatments. The 40 kDa TMD7-12 half-molecule was unaffected by these treatments. Using transfected cells expressing both TMDs 1-6 and TMDs 7-12 as separate polypeptides, the TMD7-12 half-molecule was covalently radiolabeled with N-hydroxysuccinimide [(3)H]methotrexate. No radioactivity was incorporated into the TMD1-6 half-molecule. Digestion with endoproteinase GluC decreased the size of the radiolabeled 40 kDa TMD7-12 polypeptide to approximately 20 kDa. Our results demonstrate that a functional RFC can be reconstituted with RFC half-molecules and localize a critical substrate binding domain to within TMDs 7-12.  相似文献   

5.
Xu W  Chen C  Huang P  Li J  de Riel JK  Javitch JA  Liu-Chen LY 《Biochemistry》2000,39(45):13904-13915
Binding pockets of the opioid receptors are presumably formed among the transmembrane domains (TMDs) and are accessible from the extracellular medium. In this study, we determined the sensitivity of binding of [(3)H]diprenorphine, an antagonist, to mu, delta, and kappa opioid receptors to charged methanethiosulfonate (MTS) derivatives and identified the cysteine residues within the TMDs that conferred the sensitivity. Incubation of the mu opioid receptor expressed in HEK293 cells with MTS ethylammonium (MTSEA), MTS ethyltrimethylammonium (MTSET), or MTS ethylsulfonate (MTSES) inhibited [(3)H]diprenorphine binding with the potency order of MTSEA > MTSET > MTSES. Pretreatment of mu, delta, and kappa opioid receptors with MTSEA dose-dependently inhibited [(3)H]diprenorphine binding with MTSEA sensitivity in the order of kappa > mu > delta. The effects of MTSEA occurred rapidly, reaching the maximal inhibition in 10 min. (-)-Naloxone, but not (+)-naloxone, prevented the MTSEA effect, demonstrating that the reaction occurs within or in the vicinity of the binding pockets. Each cysteine residue in the TMDs of the three receptors was mutated singly, and the effects of MTSEA treatment were examined. The mutants had similar affinities for [(3)H]diprenorphine, and C7. 38(321)S, C7.38(303)S, and C7.38(315)S mutations rendered mu, delta, and kappa opioid receptors less sensitive to the effect of MTSEA, respectively. These results indicate that the conserved Cys7.38 is differentially accessible in the binding-site crevice of these receptors. The second extracellular loop of the kappa receptor, which contains several acidic residues, appears to play a role, albeit small, in its higher sensitivity to MTSEA, whereas the negative charge of Glu6.58(297) did not. To the best of our knowledge, this is the first report to show that a conserved residue among highly homologous G protein-coupled receptors is differentially accessible in the binding-site crevice. In addition, this represents the first successful generation of MTSEA-insensitive mutants of mu, delta, and kappa opioid receptors, which will allow determination of residues accessible in the binding-site crevices of these receptors by the substituted cysteine accessibility method.  相似文献   

6.
The human reduced folate carrier (RFC) is the major membrane transport system for both reduced folates and chemotherapeutic antifolate drugs, such as methotrexate (MTX). Although the RFC protein has been subjected to intensive study in order to identify critical structural and functional determinants of transport, it is impossible to assess the significance of these studies without characterizing the essential domain structure and membrane topology. The primary amino acid sequence from the cloned cDNAs predicts that the human RFC protein has 12 transmembrane domains (TMDs) with a large cytosolic loop between TMDs 6 and 7, and cytosolic-facing N- and C-termini. To establish the RFC membrane topology, a hemagglutinin (HA) epitope was inserted into the individual predicted intracellular and extracellular loops. HA insertions into putative TMD interconnecting loops 3/4, 6/7, 7/8, and 8/9, and the N- and C-termini all preserved MTX transport activity upon expression in transport-impaired K562 cells. Immunofluorescence detection with HA-specific antibody under both permeabilized and non-permeabilized conditions confirmed extracellular orientations for loops 3/4 and 7/8, and cytosolic orientations for loops 6/7 and 8/9, and the N- and C-termini. Insertion of a consensus N-glycosylation site [NX(S/T)] into putative loops 5/6, 8/9, and 9/10 of deglycosylated RFC-Gln(58) had minimal effects on MTX transport. Analysis of glycosylation status on Western blots suggested an extracellular orientation for loop 5/6, and intracellular orientations for loops 8/9 and 9/10. Our findings strongly support the predicted topology model for TMDs 1-8 and the C-terminus of human RFC. However, our results raise the possibility of an alternative membrane topology for TMDs 9-12.  相似文献   

7.
The human reduced folate carrier (RFC) is the major membrane transport system for both reduced folates and chemotherapeutic antifolate drugs, such as methotrexate (MTX). Although the RFC protein has been subjected to intensive study in order to identify critical structural and functional determinants of transport, it is impossible to assess the significance of these studies without characterizing the essential domain structure and membrane topology. The primary amino acid sequence from the cloned cDNAs predicts that the human RFC protein has 12 transmembrane domains (TMDs) with a large cytosolic loop between TMDs 6 and 7, and cytosolic-facing N- and C-termini. To establish the RFC membrane topology, a hemagglutinin (HA) epitope was inserted into the individual predicted intracellular and extracellular loops. HA insertions into putative TMD interconnecting loops 3/4, 6/7, 7/8, and 8/9, and the N- and C-termini all preserved MTX transport activity upon expression in transport-impaired K562 cells. Immunofluorescence detection with HA-specific antibody under both permeabilized and non-permeabilized conditions confirmed extracellular orientations for loops 3/4 and 7/8, and cytosolic orientations for loops 6/7 and 8/9, and the N- and C-termini. Insertion of a consensus N-glycosylation site [NX(S/T)] into putative loops 5/6, 8/9, and 9/10 of deglycosylated RFC-Gln58 had minimal effects on MTX transport. Analysis of glycosylation status on Western blots suggested an extracellular orientation for loop 5/6, and intracellular orientations for loops 8/9 and 9/10. Our findings strongly support the predicted topology model for TMDs 1-8 and the C-terminus of human RFC. However, our results raise the possibility of an alternative membrane topology for TMDs 9-12.  相似文献   

8.
Site-directed mutagenesis was used to characterize the functional role of lysine-411, a conserved amino acid located in putative transmembrane domain (TMD) 11 of the human reduced folate carrier (hRFC). Lysine-411 was mutagenized to arginine, glutamate, and leucine, and the mutant constructs (K411R-, K411E-, and K411L-hRFC, respectively) were transfected into hRFC-deficient K562 cells. The mutant hRFC constructs were all expressed at high levels and restored 22-36% of the methotrexate (MTX) transport level in wild-type (K43-6) hRFC transfectants. Although 5-formyl tetrahydrofolate (5-CHO-H(4)PteGlu) uptake levels for both the K411E- and K411L-hRFCs were also impaired (approximately 33% and 28%, respectively), a complete restoration of the wild-type level was observed for K411R-hRFC. While loss of MTX transport activity for the K411R-hRFC transfectant was associated with an incomplete restoration of MTX sensitivity compared to K43-6 cells, these cells were similarly sensitive to Tomudex. The K411R-hRFC transfectants showed an approximately threefold decreased growth requirement for 5-CHO-H(4)PteGlu compared to K43-6 cells. The 5-CHO-H(4)PteGlu transport stimulation observed for the wild-type carrier in chloride-free buffer was also observed for K411R-hRFC, however, this response was decreased for the K411E- and K411L-hRFCs. The preservation of low levels of transport for the K411E- and K411L-hRFCs suggest that the amino acid at position 411 does not directly participate in the binding of anionic hRFC substrates. However, a functionally important role for a basic amino acid at position 411 was, nonetheless, implied by the increased MTX transport for wild-type hRFC over the K411 mutant hRFCs, and the highly selective uptake of 5-CHO-H(4)PteGlu over MTX for K411R-hRFC.  相似文献   

9.
The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.  相似文献   

10.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

11.
12.
The contribution of transmembrane regions I, II, and III of the Rickettsia prowazekii ATP/ADP translocase to the structure of the putative water-filled ATP translocation channel was evaluated from the accessibility of hydrophilic, thiol-reactive, methanethiosulfonate reagents to a library of 68 independent cysteine-substitution mutants heterologously expressed in Escherichia coli. The MTS reagents used were MTSES (negatively charged) and MTSET and MTSEA (both positively charged). Mutants F036C, Y042C, and R046C (TM I), K066C and P072C (TM II), and F101C, F105C, F108C, Y113C, and P114C (TM III) had no assayable transport activity, indicating that cysteine substitution at these positions may not be tolerated. All three MTS reagents inhibit the transport of ATP in mutants of TM I (L039C, S043C, S047C, I048C) and TM II (S061C, S063C, T067C, I069C, V070C, A074C). Further, these residues appear to cluster along a single face of the transmembrane domain. Preexposure of MTS-reactive mutants S047C (TM I) and T067C (TM II) to high levels of ATP resulted in protection from MTS-mediated inhibition. This indicated that both TM I and TM II make major contributions to the structure of an aqueous ATP translocation pathway. Finally, on the basis of the lack of accessibility of charged MTS reagents to the thiol groups in mutants of TM III, it appears that TM III is not exposed to the ATP translocation channel. Cysteine substitution of residues constituting a highly conserved "phenylalanine face" in TM III resulted in ablation of ATP transport activity. Further, substituting these phenylalanine residues for either isoleucine or tyrosine also resulted in much lower transport activity, indicating that some property of phenylalanine at these positions that is not shared by cysteine, isoleucine, or tyrosine is critical to translocase activity.  相似文献   

13.
Winkler HH  Daugherty RM  Audia JP 《Biochemistry》2003,42(43):12562-12569
The contribution of transmembrane region VIII of the Rickettsia prowazekii ATP/ADP translocase to the structure of the water-filled channel through which ATP is transported was evaluated from the accessibility of three hydrophilic, thiol reactive, methanethiosulfonate reagents to a library of 21 single-cysteine substitution mutants expressed in Escherichia coli. A negatively charged reagent (MTSES) and two positively charged reagents (MTSET and MTSEA) were used. Mutants Q323C and G327C did not tolerate cysteine substitution and were almost completely deficient in ATP transport. The remaining mutants exhibited 25-226% of the cysteine-less parent's transport activity. Five patterns of inhibition of ATP transport by the MTS reagents were observed. (i) ATP transport was not inhibited by any of the three MTS reagents in mutants Q321C, F324C, A332C, and L335C and only marginally in F333C. (ii) Transport activity of mutants F322C, Q326C, and A330C was markedly inhibited by all three reagents. (iii) ATP transport was inhibited by MTSEA in only the largest group of mutants (M334C, I336C, G337C, S338C, N339C, I340C, and I341C). (iv) Transport activity was inhibited by MTSET and MTSEA, whereas high concentrations of MTSES were required to inhibit mutants W328C, V329C, and I331C. However, mutant W328C could be inhibited by MTSES in the presence of sub-K(m) concentrations of the substrate. (v) ATP transport by mutant Y325C was unaffected by MTSEA, but inhibited approximately 50% by MTSET and MTSES. Transport of ATP protected mutants (F322C, W328C, V329C, A330C, and I331C) from MTS inhibition. Mutants in the half of TM VIII that is closest to the cytoplasm were not inhibited well by MTSES or MTSET in either whole cells or inside-out vesicles. The results indicate that TM VIII makes a major contribution to the structure of the aqueous translocation pathway, that the accessibility to impermeant thiol reagents is influenced (blocked or stimulated) by substrate, and that there is great variation in accessibility to MTS reagents along the length of TM VIII.  相似文献   

14.
P-glycoprotein (P-gp) can transport a wide variety of cytotoxic compounds that have diverse structures. Therefore, the drug-binding domain of the human multidrug resistance P-gp likely consists of residues from multiple transmembrane (TM) segments. In this study, we completed cysteine-scanning mutagenesis of all the predicted TM segments of P-gp (TMs 1-5 and 7-10) and tested for inhibition by a thiol-reactive substrate (dibromobimane) to identify residues within the drug-binding domain. The activities of 189 mutants were analyzed. Verapamil-stimulated ATPase activities of seven mutants (Y118C and V125C (TM2), S222C (TM4), I306C (TM5), S766C (TM9), and I868C and G872C (TM10)) were inhibited by more than 50% by dibromobimane. The activities of mutants S222C (TM4), I306C (TM5), I868C (TM10), and G872C (TM10), but not that of mutants Y118C (TM2), V125C (TM2), and S776C (TM9), were protected from inhibition by dibromobimane by pretreatment with verapamil, vinblastine, or colchicine. These results and those from previous studies (Loo, T. W. and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948; Loo, T. W. and Clarke, D. M. (1999) J. Biol. Chem. 274, 35388-35392) indicate that the drug-binding domain of P-gp consists of residues in TMs 4, 5, 6, 10, 11, and 12.  相似文献   

15.
16.
The alpha-factor pheromone receptor (STE2) activates a G protein signal pathway that induces conjugation of the yeast Saccharomyces cerevisiae. Previous studies implicated the third intracellular loop of this receptor in G protein activation. Therefore, the roles of transmembrane domains five and six (TMD5 and -6) that bracket the third intracellular loop were analyzed by scanning mutagenesis in which each residue was substituted with cysteine. Out of 42 mutants examined, four constitutive mutants and two strong loss-of-function mutants were identified. Double mutants combining Cys substitutions in TMD5 and TMD6 gave a broader range of phenotypes. Interestingly, a V223C mutation in TMD5 caused constitutive activity when combined with the L247C, L248C, or S251C mutations in TMD6. Also, the L226C mutation in TMD5 caused constitutive activity when combined with either the M250C or S251C mutations in TMD6. The residues affected by these mutations are predicted to fall on one side of their respective helices, suggesting that they may interact. In support of this, cysteines substituted at position 223 in TMD5 and position 247 in TMD6 formed a disulfide bond, providing the first direct evidence of an interaction between these transmembrane domains in the alpha-factor receptor. Altogether, these results identify an important region of interaction between conserved hydrophobic regions at the base of TMD5 and TMD6 that is required for the proper regulation of receptor signaling.  相似文献   

17.
Barman S  Nayak DP 《Journal of virology》2000,74(14):6538-6545
Influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. Previously, it was shown that the transmembrane domain (TMD) of NA provides a determinant(s) for apical sorting and raft association (A. Kundu, R. T. Avalos, C. M. Sanderson, and D. P. Nayak, J. Virol. 70:6508-6515, 1996). In this report, we have analyzed the sequences in the NA TMD involved in apical transport and raft association by making chimeric TMDs from NA and human transferring receptor (TR) TMDs and by mutating the NA TMD sequences. Our results show that the COOH-terminal half of the NA TMD (amino acids [aa] 19 to 35) was significantly involved in raft association, as determined by Triton X-100 (TX-100) resistance. However, in addition, the highly conserved residues at the extreme NH(2) terminus of the NA TMD were also critical for TX-100 resistance. On the other hand, 19 residues (aa 9 to 27) at the NH(2) terminus of the NA TMD were sufficient for apical sorting. Amino acid residues 14 to 18 and 27 to 31 had the least effect on apical transport, whereas mutations in the amino acid residues 11 to 13, 23 to 26, and 32 to 35 resulted in altered polarity for the mutant proteins. These results indicated that multiple regions in the NA TMD were involved in apical transport. Furthermore, these results support the idea that the signals for apical sorting and raft association, although residing in the NA TMD, are not identical and vary independently and that the NA TMD also possesses an apical determinant(s) which can interact with apical sorting machineries outside the lipid raft.  相似文献   

18.
The alpha-factor receptor (STE2) stimulates a G protein signaling pathway that promotes mating of the yeast Saccharomyces cerevisiae. Previous random mutagenesis studies implicated residues in the regions near the extracellular ends of the transmembrane domains in ligand activation. In this study, systematic Cys scanning mutagenesis across the ends of transmembrane domains 5 and 6 identified two residues, Phe(204) and Tyr(266), that were important for receptor signaling. These residues play a specific role in responding to alpha-factor since the F204C and Y266C substituted receptors responded to an alternative agonist (novobiocin). To better define the structure of this region, the Cys-substituted mutant receptors were assayed for reactivity with a thiol-specific probe that does not react with membrane-imbedded residues. A drop in reactivity coincided with residues likely to be buried in the membrane. Interestingly, both Phe(204) and Tyr(266) are located very near the interface region. However, these assays predict that Phe(204) is accessible at the surface of the receptor, consistent with the strong defect in binding alpha-factor caused by mutating this residue. In contrast, Tyr(266) was not accessible. This correlates with the ability of Y266C mutant receptors to bind alpha-factor and suggests that this residue is involved in the subsequent triggering of receptor activation. These results highlight the role of aromatic residues near the ends of the transmembrane segments in the alpha-factor receptor, and suggest that similar aromatic residues may play an important role in other G protein-coupled receptors.  相似文献   

19.
Bravo DT  Kolmakova NG  Parsons SM 《Biochemistry》2005,44(22):7955-7966
This research investigated the roles of 7 conserved ionic residues in the 12 putative transmembrane domains (TMDs) of vesicular acetylcholine transporter (VAChT). Rat VAChT in wild-type and mutant forms was expressed in PC12(A123.7) cells. Transport and ligand binding were characterized at different pH values using filter assays. The ACh binding site is shown to exhibit high or low affinity (K(d) values are approximately 10 and 200 mM, respectively). Mutation of the lysine and aspartate residues in TMDs II and IV, respectively, can decrease the fraction of sites having high affinity. In three-dimensional structures of related transporters, these TMDs lie next to each other and distantly from TMDs VIII and X, which probably contain the binding sites for ACh and the allosteric inhibitor vesamicol. Importantly, mutation of the aspartate in TMD XI can create extra-high affinities for ACh (K(d) approximately 4 mM) and vesamicol (K(d) approximately 2 nM compared to approximately 20 nM). Effects of different external pH values on transport indicate a site that must be protonated (apparent pK(a) approximately 7.6) likely is the aspartate in TMD XI. The observations suggest a model in which the known ion pair between lysine in TMD II and aspartate in TMD XI controls the conformation or relative position of TMD XI, which in turn controls additional TMDs in the C-terminal half of VAChT. The pH effects also indicate that sites that must be unprotonated for transport (apparent pK(a) approximately 6.4) and vesamicol binding (apparent pK(a) approximately 6.3) remain unidentified.  相似文献   

20.
Defining the residues involved in the binding of a substrate provides insight into how the human multidrug resistance P-glycoprotein (P-gp) can transport a wide range of structurally diverse compounds out of the cell. Because verapamil is the most potent stimulator of P-gp ATPase activity, we synthesized a thiol-reactive analog of verapamil (MTS-verapamil) and used it with cysteine-scanning mutagenesis to identify the reactive residues within the drug-binding domain of P-gp. MTS-verapamil stimulated the ATPase activity of Cys-less P-gp and had a K(m) value (25 microM) that was similar to that of verapamil. 252 P-gp mutants containing a single cysteine within the predicted transmembrane (TM) segments were expressed in HEK 293 cells and purified by nickel-chelate chromatography and assayed for inhibition by MTS-verapamil. The activities of 15 mutants, Y118C (TM2), V125C (TM2), S222C (TM4), L339C (TM6), A342C (TM6), A729C (TM7), A841C (TM9), N842C (TM9), I868C (TM10), A871C (TM10), F942C (TM11), T945C (TM11), V982C (TM12), G984C (TM12), and A985C (TM12), were inhibited by MTS-verapamil. Four mutants, S222C (TM4), L339C (TM6), A342C (TM6), and G984C (TM12), were significantly protected from inhibition by MTS-verapamil by pretreatment with verapamil. Less protection was observed in mutants I868C (TM10), F942C (TM11) and T945C (TM11). These results indicate that residues in TMs 4, 6, 10, 11, and 12 must contribute to the binding of verapamil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号