首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this paper, we present results on germination patterns of the seed dispersal system of an endemic Macaronesian plant (Rubia fruticosa). Seeds from this plant are mainly dispersed by endemic lizards and native warblers; therefore, we included three different treatments: control seeds, seeds extracted from lizards and seeds found in warbler droppings. Seeds from the same pool of every treatment were germinated in two different seasons, one in autumn, coinciding with the arrival of the first rains, and another in spring, coinciding with the arrival of the dry season. A clear differential pattern of germination success was observed between the two seasons. Seeds planted in autumn achieved a higher percentage of germination than those sown in spring in all treatments. The great robustness of these results seems to indicate that germination timing is strongly selected in R. fruticosa and this evolutionary trend probably extends to other vascular plants growing in xeric coastal environments of the Macaronesian islands.  相似文献   

2.
Seeds of the monocarpic perennial Frasera caroliniensis ripen in late summer, and most of them are dispersed in late autumn and winter. However, some viable seeds may remain undispersed for more than a year. Embryos are underdeveloped (ca. 1.1–1.3 mm long) at seed maturity and do not grow while seeds remain on plants in the field. Dormancy in freshlymatured seeds was broken by 12 to 14 weeks of cold stratification at 5 C, during which the embryos elongated. On the other hand, seeds collected in January and March required a period of warm stratification followed by a period of cold stratification to germinate. Seeds collected in September and sown in a nonheated greenhouse germinated to 83% the first spring after maturation, whereas those collected and sown in January and March did not germinate until the second spring. Thus, seeds that remained on plants in the field until winter entered a deepened state of dormancy, and a warm (summer) followed by a cold (winter) stratification period was required to overcome it.  相似文献   

3.
In this study, we conducted experiments to accumulate practical information on the propagation and establishment of a population of Cardiocrinum cordatum var. glehnii by seed sowing. C. cordatum var. glehnii seeds require approximately 19 months from seed dispersal to cotyledon emergence in the field. However, the period from seed dispersal to radicle emergence was shortened to approximately 7–8 months by the temperature transition of 25/15°C (60 days) → 15/5°C (30 days) → 0°C (120 days) → 15/5°C (i.e., 15/5°C represents alternating temperature treatment wherein the seeds were placed at 15°C for 12 h during the day and then at 5°C for 12 h during the night). More than 90% of the seeds, which were stored dry at 5°C for 12 months and sown in pots in the field, showed cotyledon emergence, whereas in seeds stored dry at 25°C, dry at room temperature, and non-dry at room temperature, cotyledon emergence was decreased by less than 1%. More than 88% of the seeds that were stored dry at 5°C and sown in the field in October 2002 immediately after collecting, November, and from April to July 2003 showed cotyledon emergence in spring 2004. However, seeds sown in August, September, and October 2003 showed cotyledon emergences of 57.6%, 0%, and 0% in spring 2004, respectively. Seeds collected in October 2002 and sown until July 2003 in the field received adequate high temperature in summer, moderate temperature in autumn, and cold temperature in winter; therefore, the percentage of cotyledon emergence was high in spring 2004. On the other hand, seeds sown in August 2003 or later could not receive enough high temperature; thus, cotyledons emerged from only a few seeds.  相似文献   

4.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

5.

Background and Aims

Most studies on seed position-dependent effects have focused on germination characteristics. Our aim was to determine the effects of seed position in the spikelet on differences in timing of germination and on the ecological life history of the grass Eremopyrum distans in its cold desert habitat.

Methods

For seeds in three spikelet positions, morphology, mass and dormancy/germination characteristics were determined in the laboratory, and seeds planted in field plots with and without watering were followed to reproduction to investigate seedling emergence and survival, plant size and seed production.

Key Results

After maturation, of the seeds within the spikelet, basal ones (group 1) are the largest and have the highest proportion with physiological dormancy, while distal ones (group 3) are the smallest and have the highest proportion of non-dormant seeds. A higher percentage of seeds after-ripened in groups 2 and 3 than in group 1. Seeds sown in the field in early summer and watered at short, regular intervals germinated primarily in autumn, while those under natural soil moisture conditions germinated only in spring. Both cohorts completed their life cycle in early summer. Seeds in group 1 had lower percentages of seedling emergence and higher percentages of seedling survival than those in groups 2 and 3. Also, plants from group 1 seeds were larger and produced more seeds per plant than those from groups 2 and 3.

Conclusions

Seed position-dependent mass was associated with quantitative differences in several life history traits of E. distans. The environmentally enforced (low soil moisture) delay of germination from autumn to spring results in a reduction in fitness via reduction in number of seeds produced per plant.  相似文献   

6.
David A. Pyke 《Oecologia》1990,82(4):537-543
Summary Demographic characteristics associated with the maintenance and growth of populations, such as seed dynamics, seedling emergence, survival, and tiller dynamics were examined for two tussock grasses, the native Agropyron spicatum and the introduced Agropyron desertorum in a 30-month field study. The introduced grass was aerially sown onto a native grassland site. Seed production of the introduced grass was greater than the native grass in both above- and below-average precipitation years. Seeds of A. spicatum were dispersed when they mature, while A. desertorum retained some seeds in inflorescences, and dispersed them slowly throughout the year. This seed retention allowed some seeds of the introduced grass to escape peak periods of seed predation during the summer and allowed seeds to be deposited constantly into the seed bank. Carryover of seeds in the seed bank beyond one year occurred in the introduced grass but not in the native species. For both species, seedling emergence occurred in both autumn or spring. Survival rates for A. desertorum were higher than A. spicatum when seedlings emerged between November and March. Survival rates of cohorts emerging before November favored A. spicatum whereas survival rates did not differ between species for cohorts emerging after March. Individuals of both species emerging after April were unable to survive the summer drought. Demographic factors associated with seeds of A. desertorum seemed to favor the maintenance and spread of this introduced grass into native stands formerly dominated by A. spicatum.  相似文献   

7.
为了解濒危物种南方红豆杉(Taxus chinensis var. mairei)种子内含物含量受温度和湿度层积的影响,设置4个季节、2种湿度(16%和24%)基质层积处理,对种子的可溶性糖、淀粉、可溶性蛋白和脂肪等内含物质的变化进行研究。结果表明,不同层积处理下种子贮藏物质的含量有显著变化,春季层积9个月后,可溶性蛋白含量达到最高值;可溶性糖含量呈现降低-升高-降低的变化趋势;淀粉和脂肪含量均随层积逐渐减少。秋季层积9个月后,淀粉含量降至最低。相比于24%湿度,16%湿度的春季、秋季、冬季层积9个月后,脂肪含量均减少较多,说明16%湿度下种子代谢活动更强。春季和秋季的暖温更能促进种子代谢,促进种子形态后熟。夏季温度过高,导致种子生活力下降,夏季层积处理3个月后,种子已经发霉和腐烂。层积过程中,种子内含物在相关酶的作用下,降解为可溶性蛋白、可溶性糖等,为种子萌发提供物质与能量。种子层积时间、温度和湿度及交互作用可作为种子内含物的调控因子。  相似文献   

8.
In this study we examined the germination ecology with special reference to the temperature requirements for embryo development and germination of Corydalis cava subsp. cava, under both outdoor and laboratory conditions. Corydalis cava is a spring flowering woodland tuberous geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, was investigated in a population growing in northern Italy. Immediately after harvest, seeds of C. cava were sown both in the laboratory under simulated seasonal temperatures and naturally. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions, culminating in radicle emergence in winter, when temperatures fell to ca 5°C. Cotyledon emergence also occurred at ca 5°C, but first emergence was delayed until late winter and early spring. Laboratory experiments showed that high (summer) followed by medium (autumn) and low temperatures (winter) are needed for physiological dormancy loss, embryo development and germination respectively. Unlike seeds of C. cava that germinated in winter, in other Corydalis species radicle emergence occurred in autumn (C. flavula) or did not depend on a period of high summer temperature to break dormancy (C. solida). Our results suggest that subtle differences in dormancy and germination behavior between Corydalis species could be related to differences in their geographical distribution.  相似文献   

9.
Abstract Lesquerella stonensis (Brassicaceae) is an obligate winter annual endemic to a small portion of Rutherford County in the Central Basin of Tennessee, where it grows in disturbed habitats. This species forms a persistent seed bank, and seeds remain viable in the soil for at least 6 years. Seeds are dormant at maturity in May and are dispersed as soon as they ripen. Some of the seeds produced in the current year, as well as some of those in the persistent seed bank, afterripen during late spring and summer; others do not afterripen and thus remain dormant. Seeds require actual or simulated spring/summer temperatures to come out of dormancy. Germination occurs in September and October. Fully afterripened seeds germinate over a wide range of thermoperiods (15/6–35/20°C) and to a much higher percentage in light (14 h photoperiod) than in darkness. The optimum daily thermoperiod for germination was 30/15°C. Nondormant seeds that do not germinate in autumn are induced back into dormancy (secondary dormancy) by low temperatures (e.g., 5°C) during winter, and those that are dormant do not afterripen; thus seeds cannot germinate in spring. These seed dormancy/ germination characteristics of L. stonensis do not differ from those reported for some geographically widespread, weedy species of winter annuals and thus do not help account for the narrow endemism of this species.  相似文献   

10.
啮齿动物作用下退耕地山杏种子扩散与贮藏的季节变化   总被引:2,自引:0,他引:2  
啮齿动物对植物种子的取食和扩散影响种子的时空分布,继而影响种子的萌发和幼苗建成,因而在森林更新中起着重要作用.在国有济源市愚公林场,选择退耕地生境,于春季、夏季、秋季分别释放人工标记的山杏种子,观察啮齿动物扩散与埋藏山杏种子的季节性差异.结果表明:1)退耕地中的啮齿动物主要包括大林姬鼠、社鼠、黑线姬鼠;2)山杏种子扩散速率在春季显著慢于夏季,夏季显著慢于秋季;3)种子搬运量受季节和种子状态交互作用影响,春季显著少于夏季,夏季显著少于秋季;4)不同季节种子平均搬运距离不同,秋季不同状态种子的搬运距离均大于春季和夏季;5)啮齿动物对山杏种子的贮藏点大小多为1粒种子,少量为2、3粒种子,且贮藏点大小与季节间存在显著的交互作用,春季单粒种子的贮藏点数量显著少于夏季和秋季,而夏季与秋季的贮藏点则倾向于多粒种子;6)在夏季和秋季各有5枚(共释放1800枚)被啮齿动物分散贮藏的山杏种子建成幼苗.  相似文献   

11.
Van Assche  Jozef  Van Nerum  Diane  Darius  Paul 《Plant Ecology》2002,159(2):131-142
The germination requirements, dormancy cycle and longevity of nine Rumexspecies were studied in field conditions and laboratory experiments to show theadaptations of the related species to their specific habitat. Within one genus,rather striking differences were observed in germination ecology. However, theclosely related species, R. acetosa and R.scutatus, are very similar: they fruit in early summer; theirseeds can germinate immediately after dispersal, and they are nondormant andshort-lived. R. acetosella also has fruits insummer, but the seeds do not germinate the first season after dispersal. Theyare long-lived, but buried seeds do not show a dormancy cycle; they mightgerminate in different seasons after exposure to light. Seeds of four species (R. conglomeratus,R. maritimus, R. sanguineus andR. crispus) are long-lived and undergo aseasonal dormancy cycle, with a low level of dormancy in winter and early springand a deep dormancy in summer as was already known for R.obtusifolius. These seeds are shed in the autumn, and they germinatemainly in the spring in consecutive years. R. maritimusalso germinates in summer and autumn on drying muddy soils. The seeds of R. hydrolapathum only germinate onwaterlogged soils, which explains its growth at the edge of streams and ponds.Its seeds are rather short-lived. The seeds of the species on very wetplaces require a higher temperature for germination.  相似文献   

12.
Fruits (drupes) of Symphoricarpos orbiculatus ripen in autumn and are dispersed from autumn to spring. Seeds (true seed plus fibrous endocarp) are dormant at maturity, and they have a small, linear embryo that is underdeveloped. In contrast to previous reports, the endocarp and seed coat of S. orbiculatus are permeable to water; thus, seeds do not have physical dormancy. No fresh seeds germinated during 2 wk of incubation over a 15°/6°-35°/20°C range of thermoperiods in light (14-h photoperiod); gibberellic acid and warm or cold stratification alone did not overcome dormancy. One hundred percent of the seeds incubated in a simulated summer → autumn → winter → spring sequence of temperature regimes germinated, whereas none of those subjected to a winter → spring sequence did so. That is, cold stratification is effective in breaking dormancy only after seeds first are exposed to a period of warm temperatures. Likewise, embryos grew at cold temperatures only after seeds were exposed to warm temperatures. Thus, the seeds of S. orbiculatus have nondeep complex morphophysiological dormancy. As a result of dispersal phenology and dormancy-breaking requirements, in nature most seeds that germinate do so the second spring following maturity; a low to moderate percentage of the seeds may germinate the third spring. Seeds can germinate to high percentages under Quercus leaf litter and while buried in soil; they have little or no potential to form a long-lived soil seed bank.  相似文献   

13.
Common ragweed (Ambrosia artemisiifolia L.) was one of 19 herbaceous weedy species used by Beal in his buried viable seed experiment started in 1879. No seeds germinated during the first 35 years of the experiment when germination tests were performed in late spring, summer or early autumn. Germination did occur in seeds buried for 40 years when seeds were exhumed and tested for germination in early spring. Data obtained in more recent research provide the probable explanation for these results. Seeds of common ragweed that do not germinate in spring enter secondary dormancy by mid to late spring and will not germinate until dormancy is broken the following late autumn and winter. Thus, during the first 35 years of the experiment seeds were dormant when tested for germination, whereas seeds buried for 40 years were nondormant. Seeds buried 50 years or longer did not germinate when tested in spring, probably because they had lost viability and/or seeds germinated during burial and seedlings died.  相似文献   

14.
Lu Ji-Qi  Zhang Zhi-Bin   《Acta Oecologica》2004,26(3):247-254
The wild apricot (Prunus armeniaca) is widely distributed in the Donglingshan Mountains of Mentougou District of Beijing, China, where its seeds may be an important food resource for rodents. Predation, removal and hoarding of seeds by rodents will inevitably affect the spatio-temporal pattern of seed fate of wild apricot in this area. By marking and releasing tagged seeds of wild apricot, we investigated seeds survival, scatter-hoarding, cache size and seedling establishment, and the preference of micro-habitats used by rodents to store seeds. The results showed that: (1) rodents in this area hoarded food intensively in autumn, as well as in spring and summer. (2) There were significant effects of habitat and season on removal rate of tagged seeds at releasing plots. In both two types of habitats, Low and High shrub, tagged seeds were removed most rapidly by rodents in autumn, at intermediate rates in spring and least rapidly in summer. (3) During three seasons, mean dispersal distance of scatter-hoarded seeds in Low shrub habitat was greater than that in High shrub. Most removed seeds were buried within 21.0 m of the releasing plots. (4) In both two types of habitats, Low and High shrub, rodents tended to carry seeds to US (Under shrub) and SE (Shrub edge) microhabitats for scatter-hoarding or predation. (5) Among the caches made by rodents, most caches contained only one seed, but up to three seeds were observed; caches of 2–3 seeds were common in autumn. (6) By comparing dental marks, we determined that large field mice (Apodemus peninsulae) and David’s rock squirrels (Sciurotamias davidianus) contributed to removal and predation of released tagged seeds. However, only the large field mice exerted a pivotal and positive role on the burial of dispersed seeds. (7) Establishment of three seedlings originated from seeds buried by rodents was documented in High shrub habitat.  相似文献   

15.
Dormancy break and germination of seeds are governed by climatic cues, and predicted changes in climate may impact the ecology and conservation of species. Paysonia perforata and P. stonensis are rare brassicaceous winter annuals occurring primarily in fields on floodplains, where corn or soybeans are recommended for habitat maintenance. We tested the effects of precipitation, based on two predictions of changes in climate, on seed germination in these two species and placed the results into a management framework. Seeds of both species, collected during peak dispersal in late April/early May, were given various periods of light (or darkness) followed by darkness (or light) at summer temperatures before placement in darkness during late summer/early autumn in both laboratory and field. The light requirement was met earliest at 10 wk (mid-July) on alternating wet/dry substrate (simulating current climatic conditions). However, seeds of P. perforata and P. stonensis were photostimulated earliest at 2 wk (mid-May) and 6 wk (mid-June), respectively, on a continuously moist substrate (simulating predicted future conditions). The soil seed bank could be depleted if plowing coincides with photostimulation of seeds. Fields should be prepared after dispersal but before seeds are photostimulated and harvesting completed before seed germination in early September. Because seeds are highly photostimulated in late summer, disturbance from harvesting must be low to prevent burial. Cultivation of soybean, particularly for forage, is better matched to the seed biology and life cycle of Paysonia than that of corn under current and predicted climates.  相似文献   

16.
Abstract Seeds of Polemonium reptans var. reptans , a perennial herb of mesic deciduous forests in eastern North America, mature in late May-early June, and a high percentage of them are dormant. Seeds afterripened (came out of dormancy) during summer when kept in a nylon bag under leaves in a nonheated greenhouse or on wet soil in a 30/15°C incubator. The optimum temperature for germination of nondormant seeds was a simulated October (20/10°C) regime. In germination phenology studies in the nonheated greenhouse, 20–30% of the seeds that eventually germinated did so in October, and the remainder germinated the following February and March. Since low (5°C) winter temperatures promote some afterripening (ca. 50%) and do not cause nondormant seeds to re-enter dormancy, seeds that fail to germinate in autumn may germinate in spring. Thus, the taxon has very little potential to form a persistent seed bank. The large spatulate embryos and ability of seeds to afterripen at high temperatures means that seeds of P. reptans var. reptans have nondeep physiological dormancy, unlike many herbaceous woodland species, which have morphophysiological dormancy.  相似文献   

17.
The majority of the seeds of the winter annual Draba verna L. require light for germination, but light can be given before they are fully after-ripened and as long as 4 months before temperature and moisture conditions are favorable for germination. Seeds that are exposed to light in late spring, or in late spring and early summer, and then removed to darkness can germinate under favorable temperature and moisture conditions in autumn, even after passing through a long unfavorable (for germination) wetting and drying period at high summer temperatures in darkness. The light requirement for germination probably is not an important factor restricting D. verna to open, well-lighted habitats.  相似文献   

18.
  • Dormancy cycles are an important mechanism for avoiding seed germination under unfavourable periods for seedling establishment. This mechanism has been scarcely studied in tropical species. Here, we studied three tropical and perennial species of Xyris, X. asperula, X. subsetigera and X. trachyphylla, to investigate in situ longevity and the existence of seasonal seed dormancy cycles.
  • Seeds of three species of Xyris were buried in their natural habitat, with samples exhumed bimonthly for 18 months. Germination of exhumed seeds was assessed under a 12‐h photoperiod over a broad range of temperatures. Seeds of X. trachyphylla were also subjected to treatments to overcome secondary dormancy.
  • Seeds of all species are able to form a persistent seed bank and exhibit seasonal changes in germinability. Secondary dormancy was acquired during the rainy summer and was overcome during the subsequent dry season (autumn/winter). Desiccation partially overcomes secondary dormancy in X. trachyphylla seeds.
  • Soil seed bank persistence and synchronisation of seed germination under favourable conditions for seedling establishment contribute to the persistence and regeneration of X. asperula, X. subsetigera and X. trachyphylla in their natural environment.
  相似文献   

19.
Mesic deciduous forest herbs often disperse seed with morphophysiological dormancy (MPD) that prevents germination during unfavorable periods for seedling survival. However, for seeds of some species with MPD, seasonal separation of root and shoot emergence and variation in dormancy levels can complicate interpretation of seedling emergence timing in the field. We tested whether dormancy-break and germination requirements differed among co-occurring perennial forest herbs, Actaea racemosa, Hydrastis canadensis, and Sanguinaria canadensis, which are wild-harvested for their medicinal properties and known to have MPD. Seeds of all species exhibited a summer → autumn → winter requirement for seedling emergence in spring. However, species differed in seed-bank persistence due to variation in primary dormancy levels and stratification requirement of seeds. A. racemosa and H. canadensis can form short-term persistent seed bank, whereas S. canadensis can form a long-term persistent seed-bank, regardless of whether elaiosomes were removed from seeds prior to burial. A. racemosa seeds are dispersed in autumn with weak physiological dormancy, as seeds germinated to high rates at 15/6°C after 8 weeks. In contrast, most seeds of the summer dispersed species, H. canadensis and S. canadensis, require summer temperatures to overcome physiological dormancy. Consequently, seedling emergence is reduced and delayed by 1 year if seeds are not sown immediately following the period of natural dispersal. Seedling emergence was much lower in the field than in controlled conditions for all species, especially in the small-seeded A. racemosa. Interspecific variation in dormancy levels and germination traits must be considered when establishing populations for conservation purposes and in understanding recruitment limitation in perennial forest herbs.  相似文献   

20.
《Flora》2006,201(2):135-143
The effects of time of seed maturation and dry seed storage and of light and temperature requirements during seed incubation on final germination percentage and germination rate were assessed for the invasive shrub Prosopis juliflora (Sw.) D.C., grown under desert environmental conditions of the United Arab Emirates (UAE). Seeds were collected from Fujira on the northern coast of the UAE at different times during the growing seasons (autumn, winter and spring) and were germinated immediately and after 8 months of dry storage under room temperature (20±3 °C). Seeds were germinated at three temperatures (15, 25 and 40 °C) in both continuous light and darkness. The results showed significant effects for time of seed collection, seed storage, light and temperature of seed incubation and many of their interactions on both germination percentage and rate. Fresh seeds matured during autumn and winter germinated significantly greater at 40 °C and in light than at lower temperatures and in dark. Storage significantly increased germination percentage and rate; the increase was greater for seeds matured during winter than for seeds matured during spring. This indicates that dormancy breakage was greater in seeds of winter than seeds of spring. The need for high temperature to achieve greater germination was significantly reduced after seed storage, especially for seeds matured in autumn and winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号