首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological action of Y. pestis adenylate cyclase on peritoneal leukocytes of guinea pigs has been studied by means of chemiluminescence. Y. pestis adenylate cyclase is supposed to contribute to the "oxidation" explosion of phagocytes in plague.  相似文献   

2.
Acid shift (pH 4.0) of liquid nutrient medium containing 20 mM Mg2+ created conditions in vitro simulating the internal environment of phagolysosome into which Yersinia pestis captured by a macrophage get in vivo. The capacity of Y. pestis to survive and multiply under these conditions irrespective of the plasmid composition of strains was confirmed experimentally. Y. pestis possesses a specific mechanism of fibrinolytic activity inhibition, preventing proteolytic degradation under the effect of Ca-dependent polypeptide (Yops) fibrinolysin and potentiating, in addition to these latter, the production of the so-called "acid" proteins by Y. pestis, coded for by pCad2+ or chromosome, including the potentially new members of LCR family. The culturing conditions affect the length of O-specific lateral chains of Y. pestis lipopolysaccharide (LPS), which corresponds to LPS SR, but not R form.  相似文献   

3.
The work deals with the study of the virulent and immunogenic properties of Y. pestis strains which lost their capacity for producing pesticine 1 as the result of the insertion of a Tn-like element into the 6-MD plasmid responsible for this property. The "switching-off" of gene pst induced a decrease in the virulence of Y. pestis injected subcutaneously into white mice and guinea pigs and had no influence on its level of immunogenicity for white mice. A suggestion was made that pesticine 1 played no essential role in the expression of the virulence and immunogenicity of Y. pestis penetrating into the body by subcutaneous route.  相似文献   

4.
The role of caf1M gene in biogenesis of Yersinia pestis capsule was studied in natural strains of the agent with Fra+/- phenotypes and recombinant variants with ycaA (caf1+;caf1M;caf1A+;caf1R+) locus defect. These bacteria did not form a clearly discernible capsule stained by classical methods but synthesized Cafl, whose content in the cells was many times higher than in lysates, in external cell wall, and in the medium with reference Y. pestis EV NIIEG culture (caf1+;caf1M;caf1A+;caf1R+). However Caf1 was not detected on the surface or culture fluid of natural and mutant Y. pestis cells. Exclusive role of Caf1M in Caf1 delivery to Y. pestis cell surface, but not in F1 monomer folding, was proven. Retention of lipopolysaccharide (LPS), a typical SR-LPS configuration and epitope specificity of its components was demonstrated, ensuring similar reactivity in solid-phase enzyme immunoassay with a panel of monoclonal antibodies to Y. pestis LPS. Study of immunochemical properties of antigenic substances derived from caf1M-defective Y. pestis cells by isolation of F1 showed that these substances represent an envelope protein involved in the caf1+ strains (together with Caf1) in assembly of "mature" F1 molecule as a result of posttranslation modification of various genes products. Variants of identification of Y. pestis with Fra+ phenotype by means of monoclonal antibodies to F1, fibrinolysis/coagulase, or LPS in solid-phase enzyme immunoassay are discussed.  相似文献   

5.
The authors have studied the effect of Y. pestis "mouse" toxin (LD50), injected intravenously to rats, on cAMP and cGMP content in the tissues of different organs (the lungs, liver, heart, spleen, kidneys, small intestine) and in the blood in the course of the development of toxinfection shock. The effect of Y. pestis "mouse" toxin on cyclic nucleotide content in the organs of experimental animals is determined by the sum of oppositely directed effects produced by the thermostable and thermolabile fractions of the toxin. Its thermostable fraction, when introduced in the dose used in the experiments, did not kill the animals. The most pronounced changes in the cyclic nucleotide content have been detected in the lungs which appear to be the main target organ for Y. pestis "mouse" toxin.  相似文献   

6.
An analysis of genome polymorphism of the Y. pestis strains by using the method of polymerase chain reaction (PCR) for the tandem repeats of bacteriophage M13 DNA revealed a species similarity of both typical and atypical (according to diagnostic signs) plague-microbe strains. Strain Y. pestis A-1726 with the atypical differential-and-diagnostic properties, without the amplicon specified for Y. pestis and sized 1000 b.p., was identified among 27 analyzed Y. pestis strains. The amplicon profiles of the basic Y. pestis subtype were found to be different from such profiles of other Y. pestis subtypes.  相似文献   

7.
PCR快速鉴定鼠疫耶尔森氏菌   总被引:1,自引:0,他引:1  
建立一种简便、快速、特异的PCR检测方法,用于鼠疫耶尔森氏菌的快速鉴定。针对鼠疫耶尔森氏菌特异的一段染色体序列3a设计引物,扩增-276bp片段的鼠疫标识序列。应用该PCR反应体系,对我国17个生态型及1个待定的生态型共计275株鼠疫耶尔森氏菌及48株相关菌株的PCR扩增结果表明,实验菌株均扩增出预期的276bp片段产物带,48株相关菌株均阴性,其检测灵敏度为100pg DNA。说明该方法用于鼠疫耶尔森氏菌的检测鉴定简便、快捷,具有很高的特异性和敏感性。  相似文献   

8.
Fur regulation in Yersinia species   总被引:17,自引:0,他引:17  
  相似文献   

9.
Yersinia pestis, the bacterial agent of plague, forms a biofilm in the foregut of its flea vector to produce a transmissible infection. The closely related Yersinia pseudotuberculosis, from which Y. pestis recently evolved, can colonize the flea midgut but does not form a biofilm in the foregut. Y. pestis biofilm in the flea and in vitro is dependent on an extracellular matrix synthesized by products of the hms genes; identical genes are present in Y. pseudotuberculosis. The Yersinia Hms proteins contain functional domains present in Escherichia coli and Staphylococcus proteins known to synthesize a poly-beta-1,6-N-acetyl-D-glucosamine biofilm matrix. In this study, we show that the extracellular matrices (ECM) of Y. pestis and staphylococcal biofilms are antigenically related, indicating a similar biochemical structure. We also characterized a glycosyl hydrolase (NghA) of Y. pseudotuberculosis that cleaved beta-linked N-acetylglucosamine residues and reduced biofilm formation by staphylococci and Y. pestis in vitro. The Y. pestis nghA ortholog is a pseudogene, and overexpression of functional nghA reduced ECM surface accumulation and inhibited the ability of Y. pestis to produce biofilm in the flea foregut. Mutational loss of this glycosidase activity in Y. pestis may have contributed to the recent evolution of flea-borne transmission.  相似文献   

10.
In the course of a molecular genetic investigation of a double inhumation, presumably a mother/child burial from Aschheim (Upper Bavaria, 6th century A.D.), which included analysis of mitochondrial DNA, molecular sexing, and polymorphic nuclear DNA, Yersinia pestis-specific DNA was detected. Molecular analyses were performed on DNA extracts obtained from two teeth of one skeleton and four teeth of the other. The use of the primer pair YP12D/YP11R (Raoult et al. [2000] Proc. Natl. Acad. Sci. 97:12800-12803), able to amplify part of the Y. pestis plasmid pPCP1 pla sequence, resulted in amplification products of the expected fragment size. Using BLASTN 2.2.2, the sequences of these amplification products shared 100% identity with that of the modern Y. pestis pla sequence in GenBank, with the exception of one amplification product which revealed a single base substitution. The application of a "suicide PCR" with the independent primer pair YP11D/YP10R (Raoult et al. [2000] Proc. Natl. Acad. Sci. 97:12800-12803) resulted in amplification products which shared a 96-98% homology with that of the modern Y. pestis pla sequence in GenBank. The observed deviations were presumably due to miscoding lesions in the template DNA. No modern Y. pestis DNA was introduced into the institute, and thus no positive controls were carried along. All extraction and PCR controls remained negative. The identification of Y. pestis-specific DNA sequences in these two skeletons, buried in the second half of the 6th century A.D., constitutes molecularly supported evidence for the presence of Y. pestis, the causative agent of plague, during the first pandemic recorded.  相似文献   

11.
鼠疫耶尔森氏菌(Yersinia pestis,以下简称"鼠疫菌")是烈性传染病鼠疫的病原菌,以鼠蚤作为传播媒介。鼠疫菌在其传播媒介鼠蚤的前胃中形成生物被膜从而促进其在宿主间传播。鼠疫菌生物被膜的形成受第二信使分子环二鸟苷酸(c-di-GMP)的正向调控。鼠疫菌中c-di-GMP由二鸟苷酸环化酶(DGC)HmsT和HmsD合成,由磷酸二酯酶(PDE)HmsP降解。文中主要介绍影响鼠疫菌环二鸟苷酸代谢及生物被膜形成的调控因子,并对其作用机制进行讨论和总结。  相似文献   

12.
为观察环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术能否适用于我国不同疫源地鼠疫耶尔森菌所有基因组型的检测,本研究建立了一种基于3a靶序列设计特异性引物快速检测鼠疫耶尔森菌的LAMP方法.选择分离自我国11个鼠疫自然疫源地的65株野生代表性鼠疫耶尔森菌株,同...  相似文献   

13.
The authors present published data and their own findings on the relationship between Yersinia pestis and Y. pseudotuberculosis and on the origination of Y. pestis from Y. pseudotuberculosis. Study of microbiological and biochemical characteristics, external membrane protein spectra, and stability of chromosomal region of pigmentation brought the authors to a hypothesis that Y. pestis minor subspecies (ssp. caucasica, altaica, hissarica, ulegeica) which are characterized by selective virulence occupy an intermediate position between Y. pseudotuberculosis and basic species of Y. pestis.  相似文献   

14.
Although very little, if any, beta-galactosidase activity is detected in Yersinia pestis by a standard Miller assay, we found that Y. pestis KIM6+ cells formed blue colonies on plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Searches of the Y. pestis genome databases revealed the presence of noncontiguous sequences highly homologous to Escherichia coli lacZ, lacY, and lacI. Yersinia pestis lacZ is predicted to encode a 1060 amino-acid protein with 62% identity and 72% similarity to beta-galactosidase from E. coli. A deletion in the Y. pestis lacZ gene caused the formation of white colonies on X-gal-containing plates and beta-galactosidase activity was at background levels in the KIM6+lacZ mutant, while the complemented strain expressed about 190 Miller units. The Y. pestis lacZ promoter was not regulated by isopropylthiogalactoside or glucose. Finally, uptake of lactose by Y. pestis may be impaired.  相似文献   

15.
A study of the structural and regulatory genes, determining rhamnose fermentation, that are located in the rha locus of the chromosome of Yersinia pestis main and non-main subspecies and of Yersinia pseudotuberculosis of serogroups I-III was performed. The nucleotide sequence of Y. pestis main subspecies differs substantially from those of non-main subspecies and Y. pseudotuberculosis by the presence of a nucleotide substitution in 671 bp location of rhaS gene resulting presumably in the Y. pestis non-main subsp inability to utilize rhamnose. This results in incapability of Y. pestis non-main subspecies to utilize rhamnose. Other nucleotide substitutions found in Y. pestis non-main subspecies strains influence only upon expression efficiency of this diagnostic criterion.  相似文献   

16.
It is known that Yersinia pestis kills Caenorhabditis elegans by a biofilm-dependent mechanism that is similar to the mechanism used by the pathogen to block food intake in the flea vector. Using Y. pestis KIM 5, which lacks the genes that are required for biofilm formation, we show that Y. pestis can kill C. elegans by a biofilm-independent mechanism that correlates with the accumulation of the pathogen in the intestine. We used this novel Y. pestis-C. elegans pathogenesis system to show that previously known and unknown virulence-related genes are required for full virulence in C. elegans. Six Y. pestis mutants with insertions in genes that are not related to virulence before were isolated using C. elegans. One of the six mutants carried an insertion in a novel virulence gene and showed significantly reduced virulence in a mouse model of Y. pestis pathogenesis. Our results indicate that the Y. pestis-C. elegans pathogenesis system that is described here can be used to identify and study previously uncharacterized Y. pestis gene products required for virulence in mammalian systems.  相似文献   

17.
Analysis of restriction fragment length polymorphism of rRNA genes of Yersinia pestis and Y. pseudotuberculosis strains, circulating in Russian Federation and abroad revealed the effectiveness of ribotyping for differentiation between these microorganisms, as well as for differentiation between different Y. pestis biovars and main and nonmain subspecies of this agent. Use of this method was shown to be promising as a component for the complex molecular typing system of Y. pestis. Variant ribotypes of main and non-main subspecies of Y. pestis strains are presented.  相似文献   

18.
Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the "classical" antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. We compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.  相似文献   

19.
Yersinia pestis, the plague bacillus, has an exceptional pathogenicity but the factors responsible for its extreme virulence are still unknown. A genome comparison with its less virulent ancestor Yersinia pseudotuberculosis identified a few Y. pestis-specific regions acquired after their divergence. One of them potentially encodes a prophage (YpfPhi), similar to filamentous phages associated with virulence in other pathogens. We show here that YpfPhi forms filamentous phage particles infectious for other Y. pestis isolates. Although it was previously suggested that YpfPhi is restricted to the Orientalis branch, our results indicate that it was acquired by the Y. pestis ancestor. In Antiqua and Medievalis strains, YpfPhi genome forms an unstable episome whereas in Orientalis isolates it is stably integrated as tandem repeats. Deletion of the YpfPhi genome does not affect Y. pestis ability to colonize and block the flea proventriculus, but results in an alteration of Y. pestis pathogenicity in mice. Our results show that transformation of Y. pestis from a classical enteropathogen to the highly virulent plague bacillus was accompanied by the acquisition of an unstable filamentous phage. Continued maintenance of YpfPhi despite its high in vitro instability suggests that it confers selective advantages to Y. pestis under natural conditions.  相似文献   

20.
Identification and cloning of a fur regulatory gene in Yersinia pestis.   总被引:22,自引:15,他引:22       下载免费PDF全文
Yersinia pestis is one of many microorganisms responding to environmental iron concentrations by regulating the synthesis of proteins and an iron transport system(s). In a number of bacteria, expression of iron uptake systems and other virulence determinants is controlled by the Fur regulatory protein. DNA hybridization analysis revealed that both pigmented and nonpigmented cells of Y. pestis possess a DNA locus homologous to the Escherichia coli fur gene. Introduction of a Fur-regulated beta-galactosidase reporter gene into Y. pestis KIM resulted in iron-responsive beta-galactosidase activity, indicating that Y. pestis KIM expresses a functional Fur regulatory protein. A cloned 1.9-kb ClaI fragment of Y. pestis chromosomal DNA hybridized specifically to the fur gene of E. coli. The coding region of the E. coli fur gene hybridized to a 1.1-kb region at one end of the cloned Y. pestis fragment. The failure of this clone to complement an E. coli fur mutant suggests that the 1.9-kb clone does not contain a functional promoter. Subcloning of this fragment into an inducible expression vector restored Fur regulation in an E. coli fur mutant. In addition, a larger 4.8-kb Y. pestis clone containing the putative promoter region complemented the Fur- phenotype. These results suggest that Y. pestis possesses a functional Fur regulatory protein capable of interacting with the E. coli Fur system. In Y. pestis Fur may regulate the expression of iron transport systems and other virulence factors in response to iron limitation in the environment. Possible candidates for Fur regulation in Y. pestis include genes involved in ferric iron transport as well as hemin, heme/hemopexin, heme/albumin, ferritin, hemoglobin, and hemoglobin/haptoglobin utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号