首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies from this laboratory have demonstrated unambiguously that the isolated β chain of human adult hemoglobin binds human haptoglobin (Hp). In the present work, the ability of the isolated subunits of haptoglobin and hemoglobin to form complexes is investigated. In quantitative radiometric adsorbent titrations, the H chain of haptoglobin bound to hemoglobin whereas the L chain had no binding activity. Also, the H chain of haptoglobin bound to the isolated α and β subunits of hemoglobin, but its binding to the α or β chain was less than the binding it exhibits to hemoglobin. The isolated L chain was able to reassociate with the H chain to form a complex that binds to hemoglobin or its subunits. Although the L chains had no binding activity, its association with the H chain increased the binding of the latter to Hb or its isolated α and β subunits suggesting a more indirect role for the L chain in haptoglobin-hemoglobin interactions.  相似文献   

2.
The binding and specific elution of Hb peptides from Hp was studied. Our results were confirmed by the study of inhibition of binding of alpha chains to Hp. In conclusion, a model of contact areas of Hp-Hb complex is proposed.  相似文献   

3.
Hemoglobin (Hb) functions as a frontline defense molecule during infection by hemolytic microbes. Binding to LPS induces structural changes in cell-free Hb, which activates the redox activity of the protein for the generation of microbicidal free radicals. Although the interaction between Hb and LPS has implications for innate immune defense, the precise LPS-interaction sites on Hb remain unknown. Using surface plasmon resonance, we found that both the Hb α and β subunits possess high affinity LPS-binding sites, with K(D) in the nanomolar range. In silico analysis of Hb including phospho-group binding site prediction, structure-based sequence comparison, and docking to model the protein-ligand interactions showed that Hb possesses evolutionarily conserved surface cationic patches that could function as potential LPS-binding sites. Synthetic Hb peptides harboring predicted LPS-binding sites served to validate the computational predictions. Surface plasmon resonance analysis differentiated LPS-binding peptides from non-binders. Binding of the peptides to lipid A was further substantiated by a fluorescent probe displacement assay. The LPS-binding peptides effectively neutralized the endotoxicity of LPS in vitro. Additionally, peptide B59 spanning residues 59-95 of Hbβ attached to the surface of Gram-negative bacteria as shown by flow cytometry and visualized by immunogold-labeled scanning electron microscopy. Site-directed mutagenesis of the Hb subunits further confirmed the function of the predicted residues in binding to LPS. In summary, the integration of computational predictions and biophysical characterization has enabled delineation of multiple LPS-binding hot spots on the Hb molecule.  相似文献   

4.
Haptoglobin (Hp) binds hemoglobin (Hb) specifically and stoichiometrically. Since Hb stimulates prostaglandin (PG biosynthesis), we investigated if Hp effects arachidonic acid (AA) metabolism. The results showed that Hp (50-250 microg protein) inhibited the biosynthesis of PGs via cyclooxygenase (COX) and 12-HETE via lipoxygenase pathway in human platelets. Additional evidence was obtained by the loss of Hp inhibitory activity upon removal of Hp by affinity chromatography on hemoglobin sepharose and by inhibition of AA or bradykinin-induced bronchoconstriction in the guinea pig. Hb reduced the inhibitory effect of Hp in a concentration-related manner such that all its inhibitory activity was lost when completely bound by Hb. Of the three Hp phenotypes, Hp 1-1 showed maximum binding capacity to Hb indicating its greater protective role. These findings implicate Hp in the regulation of COX and lipoxygenase pathways and show Hp involvement in the body's endogenous defense system against inflammation. This indicates that mammals have dual defense system, i.e., a specific immune system and non-specific Hp defense system.  相似文献   

5.
A new type of label for electron microscopy has been introduced recently which consists of 11 gold atoms in a compact stable cluster with an organic shell composed of primary amine-substituted phosphine ligands. The radius of the cluster is about 10 A. The (phosphine ligand) amines can be derivatized or allowed to react directly forming covalent bonds to specific sites of other molecules. This report describes the specific labeling of carbohydrate moietis on the glycoprotein human haptoglobin (Hp) in the haptoglobin-hemoglobin complex (Hp X Hb). The Hp X Hb complex is easily recognized in the EM as a barbell-shaped molecule. Only the Hp portion contains carbohydrate (eight carbohydrate chains per Hp X Hb). The carbohydrate moieties of the Hp X Hb complex were oxidized by sodium periodate to produce aldehydes. The primary amines on the undecagold cluster were allowed to react with the aldehyde residues to produce Schiff's base linkages which were subsequently reduced with sodium borohydride. Micrographs obtained on the Brookhaven National Laboratory high-resolution scanning transmission electron microscope (STEM) showed the undecagold label to be localized in a region known to be occupied by the heavy chains of haptoglobin. The amount of labeling was found to be two to four gold clusters per molecule when excess label was reacted. The variation in position of the label is discussed and may be due to flexibility of the carbohydrate chains. Control experiments ruled out nonspecific binding of the gold cluster to the Hp X Hb. The high chemical specificity of the reaction and the high resolution of the gold cluster should make this new label of widespread value in studies of other glycoproteins or carbohydrate-bearing molecules.  相似文献   

6.
Haptoglobin (Hp) can be purified by affinity chromatography using hemoglobin (Hb)-linked Sepharose. Elution with 8 M urea is generally performed, resulting in heavy contamination of the Hp preparation by apolipoprotein AI (ApoAI), and partial loss of Hb binding activity. Hp, separated from ApoAI, was recovered by elution with glycine-HCl at pH 3. Complexes of the isolated protein with Hb or ApoAI were detected by enzyme-linked immunosorbent assay (ELISA). Competition between the two ligands in their interaction with Hp was observed. Concanavalin A (ConA), which binds the Hp carbohydrate chains, did not influence Hp binding to ApoAI. These results suggest that changes in the plasma levels of ApoAI or Hb affect the Hp role in regulating the reverse transport of cholesterol or preventing Hb-dependent oxidative damage.  相似文献   

7.
CD163 is a highly expressed macrophage membrane protein belonging to the scavenger receptor cysteine rich (SRCR) domain family. The CD163 expression is induced by interleukin-6, interleukin-10 and glucocorticoids. Its function has remained unknown until recently when CD163 was identified as the endocytic receptor binding hemoglobin (Hb) in complex with the plasma protein haptoglobin (Hp). This specific receptor-ligand interaction leading to removal from plasma of the Hp-Hb complex-but not free Hp or Hb-now explains the depletion of circulating Hp in individuals with increased intravascular hemolysis. Besides having a detoxificating effect by removing Hb from plasma, the CD163-mediated endocytosis of the Hp-Hb complex may represent a major pathway for uptake of iron in the tissue macrophages.The novel functional linkage of CD163 and Hp, which both are induced during inflammation, also reveal some interesting perspectives relating to the suggested anti-inflammatory properties of the receptor and the Hp phenotypes.  相似文献   

8.
Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.  相似文献   

9.
We have compared the structures of horse azide methemoglobin and methemoglobin (MetHb) at 2.8 Å resolution by X-ray difference Fourier analysis. Of four low-spin liganded Hb derivatives (nitric oxide Hb, carbon monoxide Hb, cyanide MetHb, and azide MetHb), azide MetHb is closest in structure to MetHb. In azide MetHb the ligands are co-ordinated end-on at angles of about 125 ° to the heme axes, which is similar to the stereochemistry assumed by azide in binding to free heme. Because of its bent binding geometry, azide encounters less interference in binding and perturbs the protein structure less than carbon monoxide and cyanide, which are smaller, but prefer linear axial co-ordination to heme. Steric interactions between ligand and protein are greater on the β chain, where the E helix is pushed away from the heme relative to MetHb, than on the α chain. Iron position is the same and heme stereochemistry and position are very similar in azide MetHb and MetHb.  相似文献   

10.
Structural changes of heme side-chains of human adult hemoglobin (Hb A) upon ligand (O2 or CO) dissociation have been studied by circular dichroism (CD) and resonance Raman (RR) spectroscopies. We point out the occurrence of appreciable deformation of heme side-chains like vinyl and propionate groups prior to the out-of-plane displacement of heme iron. Referring to the recent fine resolved crystal structure of Hb A, the deformations of heme side-chains take place only in the β subunits. However, these changes are not observed in the isolated β chain (β4 homotetramer) and, therefore, are associated with the α–β inter-subunit interactions. For the communications between α and β subunits in Hb A regarding signals of ligand dissociation, possible routes are proposed on the basis of the time-resolved absorption, CD, MCD (magnetic CD), and RR spectroscopies. Our finding of the movements of heme side-chains would serve as one of the clues to solve the cooperative O2 binding mechanism of Hb A.  相似文献   

11.
Free hemoglobin (Hb) triggered vascular damage occurs in many hemolytic diseases, such as sickle cell disease, with an unmet need for specific therapeutic interventions. Based on clinical observations the Hb and heme scavenger proteins haptoglobin (Hp) and hemopexin (Hx) have been characterized as a sequential defense system with Hp as the primary protector and Hx as a backup when all Hp is depleted during more severe intravascular hemolysis. In this study we present a mechanistic rationale for this paradigm based on a combined biochemical and cell biological approach directed at understanding the unique roles of Hp and Hx in Hb detoxification. Using a novel in vitro model of Hb triggered endothelial damage, which recapitulates the well-characterized pathophysiologic sequence of oxyHb(Fe2+) transformation to ferric Hb(Fe3+), free heme transfer from ferric Hb(Fe3+) to lipoprotein and subsequent oxidative reactions in the lipophilic phase. The accumulation of toxic lipid peroxidation products liberated during oxidation reactions ultimately lead to endothelial damage characterized by a specific gene expression pattern with reduced cellular ATP and monolayer disintegration. Quantitative analysis of key chemical and biological parameters allowed us to precisely define the mechanisms and concentrations required for Hp and Hx to prevent this toxicity. In the case of Hp we defined an exponential relationship between Hp availability relative to oxyHb(Fe2+) and related protective activity. This exponential relationship demonstrates that large Hp quantities are required to prevent Hb toxicity. In contrast, the linear relationship between Hx concentration and protection defines a highly efficient backup scavenger system during conditions of large excess of free oxyHb(Fe2+) that occurs when all Hp is consumed. The diverse protective function of Hp and Hx in this model can be explained by the different target specificities of the two proteins.  相似文献   

12.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in isolated α and β subunits of human hemoglobin (Hb) at pH 5.5–9.0 and 20°C. The H-D exchange occurs by the EX2 mechanism. The retardation factor of subunit exchange rate (P) is in a range of approximately 102–107. Compared to tetrameric Hb, the probability of local fluctuations (1/P) increases to a slightly greater extent in monomeric α subunits than in tetrameric β subunits. Unlike in the whole Hb molecule, oxygenation of its subunits has no effect on the probability of local fluctuations, and the subunits show no pH-dependent changes in 1/P values (observed for liganded Hb). Probable mechanisms accounting for overall intensification of local fluctuations upon the cleavage of contacts between subunits of the tetrameric Hb molecule are discussed with regard to structural crystallographic data.  相似文献   

13.
为研究大鼠红细胞对葡萄糖利用的异头物选择性及其作用机制,应用大鼠红细胞,对葡萄糖的两种异头物作了异构化速率、乳酸生成量、内流速度和大鼠红细胞已糖激酶作用下的磷酸化速度等进行了测定.结果指出,37℃时大鼠红细胞的D-葡萄糖β-异头物和α-异头物代谢成乳酸的速度分别是0.27μmol/gHb(3min)和0.21μmol/gHb(3min),即前者快于后者30%.同时β-D-葡萄糖向红细胞内转运速度也快于后者:分别是5.0和3.5μmol/gHb(3min).大鼠红细胞已糖激酶的葡萄糖磷酸化速率实验结果指出:β-异头物比α-异头物快30%;对于该两种异头物已糖激酶的Km值均为53μmol/L.红细胞与α-和β-D-葡萄糖保温1min后,其葡萄糖浓度均达到1mmol/L左右,说明至少在1min内对于已糖激酶的磷酸化此两种异头物的葡萄糖浓度均已饱和.这些结果提示,大鼠红细胞葡萄糖利用的β-异头物优选性主要与其磷酸化速度有关,而与其转运速度关系不大.  相似文献   

14.
The pathogen Staphylococcus aureus uses iron-regulated surface determinant (Isd) proteins to scavenge the essential nutrient iron from host hemoproteins. The IsdH protein (also known as HarA) is a receptor for hemoglobin (Hb), haptoglobin (Hp), and the Hb-Hp complex. It contains three NEAT (NEAr Transporter) domains: IsdH(N1), IsdH(N2), and IsdH(N3). Here we show that they have different functions; IsdH(N1) binds Hb and Hp, whereas IsdH(N3) captures heme that is released from Hb. The staphylococcal IsdB protein also functions as an Hb receptor. Primary sequence homology to IsdH indicates that it will also employ functionally distinct NEAT domains to bind heme and Hb. We have used site-directed mutagenesis and surface plasmon resonance methods to localize the Hp and Hb binding surface on IsdH(N1). High affinity binding to these structurally unrelated proteins requires residues located within a conserved aromatic motif that is positioned at the end of the beta-barrel structure. Interestingly, this site is quite malleable, as other NEAT domains use it to bind heme. We also demonstrate that the IsdC NEAT domain can capture heme directly from Hb, suggesting that there are multiple pathways for heme transfer across the cell wall.  相似文献   

15.
Dihydroalprenolol and dihydroergocryptine were used to measure β and α adrenergic receptors respectively in heart ventricles from control, thyroxine (T4)-treated and propylthiouracil (PTU)-treated rats. Ventricles from T4-treated rats show an increase in the number of β receptors and a decrease in the number of α receptors. The β to α receptor ratio increases six fold. No change in binding affinity of the β receptor is observed but a decrease occurs in the affinity of the α receptor in ventricles from T4-treated hearts. Ventricles from PTU-treated hearts show a small decrease in the number of β receptors but a large decrease in the number of α receptors. The binding affinity for both the α and β receptor is increased in the PTU-treated rats. The total number of α plus β receptors is increased in the T4-treated rats and decreased in the PTU-treated rats.  相似文献   

16.
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.  相似文献   

17.
Hemoglobin (Hb) plays a critical role in human physiological function by transporting O2. Hb is safe and inert within the confinement of the red blood cell but becomes reactive and toxic upon hemolysis. Haptoglobin (Hp) is an acute-phase serum protein that scavenges Hb and the resulting Hb-Hp complex is subjected to CD163-mediated endocytosis by macrophages. The interaction between Hb and Hp is extraordinarily strong and largely irreversible. As the structural details of the human Hb-Hp complex are not yet available, this study reports for the first time on insights of the binding modalities and molecular details of the human Hb-Hp interaction by means of protein-protein docking. Furthermore, residues that are pertinent for complex formation were identified by computational alanine scanning mutagenesis. Results revealed that the surface of the binding interface of Hb-Hp is not flat and protrudes into each binding partner. It was also observed that the secondary structures at the Hb-Hp interface are oriented as coils and α-helices. When dissecting the interface in more detail, it is obvious that several tyrosine residues of Hb, particularly β145Tyr, α42Tyr and α140Tyr, are buried in the complex and protected from further oxidative reactions. Such finding opens up new avenues for the design of Hp mimics which may be used as alternative clinical Hb scavengers.  相似文献   

18.
Cheng  Zhuru  Zhu  Xiaonian  Zeng  Dan  Feng  Qiao  Tian  Baodong  Zheng  Haiqing  Tan  Shengkui  Zhu  Chunjiang 《Molecular biology reports》2022,49(7):6199-6205
Molecular Biology Reports - The hematological phenotype and genotype analysis of hemoglobin New York (Hb New York) combined with α or β thalassemia has been rarely reported, and whether...  相似文献   

19.
The reaction of tetranitromethane with human chorionic gonadotropin and its subunits has been investigated. The hormone consists of two subunits, α and β, containing four and three tyrosyl residues, respectively. Introduction of 1 nitrated tyrosine residue into the native hormone was accompanied by a 20% loss in immunological reactivity and a 50% loss in biological activity. This initial reaction occurred at α Tyr-88 and/or α Tyr-89. Exhaustive nitration of the hormone modified α tyrosines 65, 88, and 89 and resulted in 75% inactivation biologically and 50% immunologically. Either nitrated α subunit obtained by dissociation of the nitrated hormone recombined with the native β subunit to give a hormone whose activity was in reasonable agreement with that of the corresponding nitrated monomer. These results indicate involvement of α Tyr-88 and/or α Tyr 89 in binding of the hormone to its receptor. These residues are not required for binding to the β subunit, however. Tyr-65 of the α subunit is probably not involved in binding to either the β subunit or the hormone receptor. The β subunit obtained from the exhaustively nitrated hormone was unmodified and recombined with native α to give fully active hormone. About 25% of the protein was recovered as polymeric material following nitration; lesser amounts of crosslinked monomer were formed. Both were biologically inactive. The polymer products retained about 30% of the native immunological competence.Nitration of the isolated α subunit fully converted the remaining tyrosine (Tyr-37) to 3-nitrotyrosine in a two-step reaction. The fully nitrated α subunit did not recombine well with the native β subunit and the recombinant hormone has 10% or less of the native activity. Involvement of α Tyr-37 in binding to the β subunit is suggested by these data. However, exposure of this residue by a conformational change in the α subunit after dissociation of the native hormone, while it seems unlikely in view of the high disulfide content, is also consistent with the data. Reaction of the free β subunit with tetranitromethane resulted in complete nitration of Tyr-37, 85% nitration of Tyr-59, and 25% nitration of Tyr-82. The nitrated β subunit did not recombine well with native α but the isolated recombinant had two-thirds of the native activity. From these data we conclude that β Tyr-37 and/or β Tyr-59 are possibly involved in binding to the α subunit but do not have a role in the biological activity. Tyr-82 of β is apparently not involved in either subunit interactions or hormone-receptor binding.  相似文献   

20.
Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS2 mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the β-globin chain of the Hb:Hp complex, including decreased βCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号