首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that inhibitors of peroxide removal, such as BCNU, an indirect inhibitor of glutathione peroxidase (GPx), and 3-amino-1,2,4-triazole (AT), a direct inhibitor of catalase (CAT), should cause toxicity to cancer cells after manganese superoxide dismutase (MnSOD) overexpression due to elevated peroxide levels. In vitro, hamster cheek pouch carcinoma cells (HCPC-1) and human oral squamous carcinoma cells (SCC-25) were infected with various combinations of adenovirus containing MnSOD cDNA (AdMnSOD). Cells were then treated with or without BCNU and assayed for viability using Annexin/PI staining and flow cytometry. In AdMnSOD plus BCNU-treated SCC-25 and HCPC-1 cells, a 30-60% decrease in cell viability was observed compared to BCNU alone. In vivo, HCPC-1 and SCC-25 xenografts were allowed to grow to approximately 70 mm(3) and 10(9) plaque forming units (pfu) of AdMnSOD were injected directly into the tumors. Two days later, 15 or 30 mg/kg BCNU was injected intratumorally. Tumor growth was greatly inhibited (4- to 20-fold) by this combined treatment, as well as increasing animal survival. Tumor volume could be decreased further by giving multiple doses of AdMnSOD or inhibiting catalase activity with AT. These results suggest that, by using these combination therapies, a significant decrease in tumor mass can be achieved.  相似文献   

2.
We have studied the effects of overexpression of superoxide dismutase (SOD), a tumor suppressor protein that dismutes superoxide radical to H2O2, on breast cancer cell growth in vitro and xenograft growth in vivo. No previous work has directly compared the growth-suppressive effects of manganese SOD (MnSOD) and copper-zinc SOD (CuZnSOD). We hypothesized that either adenoviral MnSOD (AdMnSOD) or adenoviral CuZnSOD (AdCuZnSOD) gene therapy would suppress the growth of human breast cancer cells. After determining the antioxidant profiles of three human breast cell lines, MCF 10A, MDA-MB231, and MCF-7, we measured the effects of MnSOD or CuZnSOD overexpression on cell growth and survival in vitro and in vivo. Results demonstrated that infection with AdMnSOD or AdCuZnSOD increased the activity of the respective enzyme in all three cell lines. In vitro, overexpression of MnSOD or CuZnSOD decreased not only cell growth but also clonogenic survival in a dose- and transgene-dependent manner. In vivo, treatment of tumors with AdMnSOD or AdCuZnSOD decreased xenograft growth compared to controls. The first direct comparison of MnSOD to CuZnSOD overexpression indicated that CuZnSOD and MnSOD were similarly effective at suppressing cancer cell growth.  相似文献   

3.
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.  相似文献   

4.
Roles of reactive oxygen species (ROS) in damage to mitochondrial DNA (mtDNA) following ultraviolet (UV)-irradiation were investigated in the human hepatoma cell line SK-HEP-1. We altered the intracellular status of ROS by the overexpression of manganese superoxide dismutase (MnSOD) and/or catalase. Using HPLC, we analyzed 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo), known as a marker of damage to DNA molecules. UV-irradiation resulted in the accumulation of 8-oxodGuo in these cells. The overexpression of MnSOD enhanced the accumulation of 8-oxodGuo by UV. The co-overexpression of catalase inhibited the accumulation of 8-oxodGuo by UV in MnSOD-transfectants. The overexpression of MnSOD reduced the colony forming capacity in SK-HEP-1 cells and the co-overexpression of catalase with MnSOD stimulated the capacity compared to control. UV-irradiation inhibited the colony forming capacity in these cells; no difference was observed among the capacities of control, MnSOD- and catalase-transfectants. However, the overexpression of MnSOD/catalase significantly rescued the reduction of colony forming capacity by UV-irradiation. Our results suggest that the accumulation of hydrogen peroxide plays a key role in the oxidative damage to mtDNA of UV-irradiated cells, and also that the overexpression of both MnSOD and catalase reduces the mtDNA damage and blocks the growth inhibition by UV. Our results also indicate that the increased activity of MnSOD may lead to a toxic effect on mtDNA by UV-irradiation.  相似文献   

5.
Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-alpha- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-alpha-dependent activation of JNK and NF-kappaB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-kappaB activity exhibited enhanced invasiveness. Inhibition of the NF-kappaB pathway by TNF-alpha neutralizing Abs, an NF-kappaB inhibitor, RNAi to RelA, or overexpression of IkappaB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-kappaB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-kappaB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-alpha, via NF-kappaB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.  相似文献   

6.
Beta carotene (250 micrograms/ml) dissolved in mineral oil applied either topically or injected locally (190 ng/ml dissolved in media) into DMBA (7,12-dimethylbenz(a)anthracene)-induced or HCPC-1 cell line-produced oral squamous cell carcinoma of the hamster buccal pouch was observed to result in the regression of these tumors. (p less than or equal to .005) Beta carotene application to tumor bearing pouches was observed to produce a dramatic increase in positively stained macrophages for tumor necrosis factor (TNF-alpha) as compared to macrophages in control pouches. Macrophages from hamsters with regressed tumor were shown to produce a significant increase in cytotoxicity to HCPC-1 tumor cells. Regression of the hamster oral carcinoma was correlated with the increased capacity of macrophages to lyse tumor cells, and related to the induction of tumor necrosis factor which was associated with the administration of the carotenoid, beta carotene.  相似文献   

7.
There is increased staining of endothelins (ET-1, -2, and -3) and receptors (ET-RA and -RB) in invasive breast tumors compared to nonneoplastic tissue, and ETs stimulate MCF-7 cell invasion in vitro. We analyzed ETstimulation of benign and transformed mammary epithelial cells, and whether expression of ETs is sufficient to induce invasiveness. In breast cancer patient serum, ET-1 was increased in those patients with lymph node metastases compared to those with no lymph node involvement; ETs, however, had no mitogenic effect on breast tumor cell lines in vitro. The benign mammary epithelial cell line, hTERT-HME1, and the poorly invasive breast tumor cell line MCF-7 secreted low levels of ET-1, while the invasive cell lines SKBR3 and MDAMB231 secreted high levels. Expression of the ETs and receptors by the cell lines broadly correlated with their in vitro invasiveness; overexpression of ETs in MCF-7 cells increased basal invasion. ET-mediated invasion involved both receptors and a calcium influx to induce a pertussis toxin-sensitive MAPK pathway. MMP-14 activity was induced via ET-RA in an autocrine manner. In contrast to transformed cells, ET stimulation or overexpression did not induce an invasive phenotype in benign cells. Benign cells do not respond to ETs, and ET expression is not sufficient to induce invasion; however, the level of ET production by tumor cells correlates with their invasiveness, and increasing expression of the ET axis promotes breast tumor cell invasion via both receptors, while MMP-14 is induced via ET-RA.  相似文献   

8.
The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.  相似文献   

9.
10.
探讨体外共培养环境中小鼠胚胎干细胞对小鼠黑色素瘤B16细胞的影响。建立C57BL/6小鼠胚胎干细胞系,通过小鼠胚胎干细胞与肿瘤细胞体外共培养模型观察小鼠胚胎干细胞对肿瘤细胞的形态及生长行为的影响,MTT法与transwell小室法分别检测共培养后肿瘤细胞粘附性、迁移性及侵袭性的变化。共培养中小鼠胚胎干细胞能够侵入并推开小鼠黑色素瘤细胞形成自己的生长空间,与对照组比较共培养后肿瘤细胞的粘附性、迁移性及侵袭性均显著降低(P<0.05,P<0.01)。结果表明体外共培养体系中小鼠胚胎干细胞能够侵袭肿瘤细胞,并降低细胞粘附、迁移及侵袭相关恶性生物学行为。  相似文献   

11.
Loss of function of metastasis suppressor genes is an important step in the progression to a malignant tumor type. Studies in cell culture and animal models have suggested a role of Raf kinase inhibitor protein (RKIP) in suppressing the metastatic spread of prostate cancer, breast cancer, and melanoma cells. However, the function of RKIP in ovarian cancer (OVCA) has not been reported. To explore the potential role of RKIP in epithelial OVCA metastasis, we detected the expression levels of RKIP protein in tissue samples from patients with epithelial OVCA. Consequently, the expression of RKIP is reduced in the poorly differentiated OVCA than in the well-differentiated and moderately differentiated OVCA. In addition, in vitro cell invasion assay indicated that the RKIP expression was inversely associated with the invasiveness of five OVCA cell lines. Consistent with this result, the cell proliferation, anchorage-independent growth, cell adhesion, and invasion were decreased in RKIP overexpressed cells but increased in RKIP down-regulated cells. Further investigation indicated that RKIP inhibited OVCA cell proliferation by altering cell cycle progression rather than promoting apoptosis. Furthermore, the overexpression of RKIP suppressed the ability of human OVCA cells to metastasize when the tumor cells were transplanted into nude mice. Our data show the effect of RKIP on the proliferation, migration, or adhesion of OVCA cells. These results indicate that RKIP is also a metastasis suppressor gene of human epithelial OVCA.  相似文献   

12.
Tumor cell invasion of basement membranes (BM) represents one of the critical steps in the metastatic process. Tumor cell recognition of individual BM matrix components may involve individual cell adhesion receptors, such as integrins or cell surface proteoglycans, or may involve a coordinate action of both types of receptors. In this study, we have focused on the identification of a cell surface CD44/chondroitin sulfate proteoglycan (CSPG) and alpha 2 beta 1 integrin on human melanoma cells that are both directly involved in the in vitro invasion of reconstituted BM via a type IV collagen-dependent mechanism. Interfering with cell surface expression of human melanoma CSPG with either p-nitro-phenyl-beta-D-xylopyranoside treatment or anti-CD44 monoclonal antibody (mAb) preincubation (mAb) preincubation inhibits melanoma cell invasion through reconstituted BM. These treatments also strongly inhibit melanoma cell migration on type IV collagen, however, they are ineffective at inhibiting cell adhesion to type IV collagen. Purified melanoma cell surface CD44/CSPG, or purified chondroitin sulfate, bind to type IV collagen affinity columns, consistent with a role for CD44/CSPG-type IV collagen interactions in mediating tumor cell invasion. In contrast, melanoma cell migration on laminin (LM) does not involve CD44/CSPG, nor does CD44/CSPG bind to LM, suggesting that CD44/CSPG-type IV collagen interactions are specific in nature. Additionally, anti-alpha 2 and anti-beta 1 integrin mAbs are capable of blocking melanoma cell invasion of reconstituted BM. Both of these anti-integrin mAbs inhibit melanoma cell adhesion and migration on type IV collagen, whereas only anti-beta 1 mAb inhibits cell adhesion to LM. Collectively, these results indicate that melanoma cell adhesion to type IV collagen is an important consideration in invasion of reconstituted BM in vitro, and suggest that CD44/CSPG and alpha 2 beta 1 integrin may collaborate to promote human melanoma cell adhesion, migration, and invasion in vivo.  相似文献   

13.
Manganese superoxide dismutase (MnSOD) catalyzes the dismutation of superoxide anions (O(2)(-)) into hydrogen peroxide (H(2)O(2)). We altered the intracellular status of reactive oxygen species by introducing human MnSOD cDNA into the human ovarian cancer cell line SK-OV-3. The overexpression of MnSOD inhibited cell growth and induced a concomitant increase in the level of H(2)O(2) in SK-OV-3 cells. The cells overexpressing MnSOD were more resistant to irradiation than parental cells. MnSOD overexpression shortened the G(2)-M duration in irradiated cells. Either inhibition of p38 mitogen-activated protein kinase (p38MAPK) or scavenging free radicals blocked the induction of radioresistance by MnSOD and also abolished the shortening of the G(2)-M duration with concomitant inhibition of p38MAPK phosphorylation. Irradiation increased the generation of H(2)O(2) even more in these transfectants. These results suggest that the accumulated H(2)O(2) potentiated the activation of p38MAPK after irradiation in cells overexpressing MnSOD, which led to the protection of cells from irradiation-mediated cell death through the G(2)-M checkpoint. SK-OV-3 cells had no constitutive expression of p53, and the overexpression of MnSOD and/or irradiation did not induce p53 or p21(WAF1), which causes cell cycle arrest. Thus, our results suggest that MnSOD alters the cell cycle progression of irradiated cells independently of p53 and p21(WAF1).  相似文献   

14.
胃癌组织中存在着较高的猪鼻支原体感染率,而P37是猪鼻支原体的主要免疫原.以往研究表明,P37能抑制肿瘤细胞的黏附,促进肿瘤细胞浸润和转移.为了更好地研究P37在肿瘤发生和转移中的功能,通过基因克隆的方法,利用Ad-easy体系,在细菌BJ5183中同源重组后,转染293细胞,成功包装出重组P37腺病毒.它能有效感染乳腺癌细胞BICR.通过RT-PCR和蛋白质印迹检测表明,感染重组P37腺病毒后的BICR细胞能大量表达并分泌P37蛋白.运用该腺病毒体系进行细胞迁移实验表明,P37能显著增强BICR细胞的体外迁移能力.  相似文献   

15.
已有研究表明, miR-145在多种肿瘤中低表达, 并与细胞增殖和转移相关。文章通过生物信息学分析并结合体外实验鉴定, 发现DAB2(Disabled homolog 2)为miR-145在肿瘤转移过程中累及的新靶点。DAB2一直被认为是一个重要的抑癌基因, 在多种肿瘤标本中表达低下。然而, 研究发现, 在具高侵袭能力的前列腺癌细胞株PC3中DAB2基因却呈较高水平表达。另外, 外源表达miR-145能显著下调 DAB2表达水平, 并抑制PC3细胞的迁移和侵袭能力, 且这种miR-145诱导的PC3细胞功能缺陷能被DAB2过表达修复。上述结果表明, miR-145能通过靶向调控DAB2而影响高侵袭前列腺癌细胞的迁移和侵袭能力。  相似文献   

16.
The overexpression of manganese superoxide dismutase (MnSOD), an enzyme that catalyzes the removal of superoxide (O2*-) from the mitochondria, has been shown to be closely associated with tumor regression in vivo and loss of the malignant phenotype in vitro. To investigate the mechanism by which MnSOD overexpression mediates this reversal, we have established 29 independent, clonal MnSOD-overexpressing HT-1080 fibrosarcoma cells. MnSOD activity is inversely correlated with cell proliferation in our cell lines. Incubating cells in 3% oxygen can prevent the inhibition of cellular proliferation mediated by MnSOD, suggesting that oxygen is a prerequisite component of the MnSOD-dependent proliferative inhibition. Confocal laser microscopy was used in combination with the oxidant-sensitive fluorescent dyes dihydrorhodamine-123, dihydroethidium, and 2',7'-dichlorodihydrofluorescein diacetate to determine the oxidizing capacity of the MnSOD-overexpressing cells. When compared with parental or control cell lines, there was a significant decrease in the rate of oxidation of the fluorophores in the MnSOD-overexpressing cell lines. Thus, an increase in the oxidizing capacity of the cells does not appear to mediate the inhibition of proliferation associated with MnSOD overexpression. Superoxide dismutase has also been shown to enhance the cytotoxic activity of NO* toward tumor cells. In this study, we have shown that MnSOD overexpression enhances the cytostatic action of the NO* donors, sodium nitroprusside, 3-morpholinosydnonomine, and (Z)-1-[2-aminethyl)-N-(2-ammonioethyl)amino]diazen-1-+ ++ium-1,2-diolate in a dose-dependent manner. In addition, the NO* toxicity is blocked by oxyhemoglobin, a NO* scavenger. Our findings suggest that NO* may play a role in the reversal of tumorigenicity associated with MnSOD overexpression.  相似文献   

17.
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.  相似文献   

18.
Pentoxifylline (PTX), a methylxanthine derivative widely used as a hemorheological agent in the treatment of peripheral vascular disease, was studied to unveil the mechanisms responsible for its inhibitory action on B16-F10 experimental metastasis. In vitro pretreatment of B16-F10 cells with noncytotoxic concentrations of PTX significantly inhibited their adhesion to reconstituted basement membrane Matrigel® and type IV collagen as well as the relative activity of secreted 92 kD metalloproteinase. However, PTX pretreatment of B16-F10 cells did not affect their in vitro invasiveness. Heterotypic organ adhesion assays carried out with B16-F10 cells and suspended organ tissues demonstrated that pretreatment with noncytotoxic concentrations of PTX of both, tumor cells or lung tissue, brought about a dose-dependent inhibition of melanoma cell adhesion to lung. Immunohistochemical studies using antibodies against CD31 adhesion molecule (PECAM-1) revealed that B16-F10 cells adhere to lung endothelial cells. Our results suggest that PTX may exert its inhibitory effect on tumor lodgment, and as a consequence of that on experimental metastases, through an inhibitory action on cell adhesion molecules.  相似文献   

19.
p8 is a stress gene whose activity is necessary for tumor development and progression. The acquisition of invasive properties by transformed cells is a key event in tumor development. In order to establish whether p8 is involved or not in this phenomenon, we assessed the capacity of p8 at influencing cell adhesion, migration, invasion, and tumorigenesis of pancreatic cancer cells. p8 expression was knocked down by a small interfering RNA (siRNA) in pancreatic cancer-derived Panc-1 and MiaPaCa-2 cells and subsequent changes in cell adhesion, migration, invasion, and tumorigenesis were assessed. Influence of p8 silencing on gene expression was analyzed using cDNA microarrays. The influence of inhibiting CDC42, one of the genes most over-expressed in p8-silenced cells, on the changes observed in p8-silenced cells was also evaluated. Finally, the tumorigenic capacities of Panc-1 cells transfected with control siRNA or p8 siRNA were compared by assessing their ability to form colonies in soft agar and to grow as xenografts in nude mice. Knocking-down p8 in pancreatic cancer cells in vitro decreased migration and invasion while increasing cell adhesion; over-expression produced the opposite effect. Knocking down CDC42 reversed almost completely the effects of silencing p8 in vitro. Finally, cells transfected with p8 siRNA were almost unable to form colonies in soft agar. In addition, p8-deficient Panc-1 cells did not develop tumors when injected subcutaneously in nude mice. In conclusion, p8 expression controls pancreatic cancer cell migration, invasion and adhesion, three processes required for metastasis, at least in part, through CDC42, a major regulator of cytoskeleton organization.  相似文献   

20.
The overexpression of members of the ErbB tyrosine kinase receptor family has been associated with cancer progression. We demonstrate that focal adhesion kinase (FAK) is essential for oncogenic transformation and cell invasion that is induced by ErbB-2 and -3 receptor signaling. ErbB-2/3 overexpression in FAK-deficient cells fails to promote cell transformation and rescue chemotaxis deficiency. Restoration of FAK rescues both oncogenic transformation and invasion that is induced by ErbB-2/3 in vitro and in vivo. In contrast, the inhibition of FAK in FAK-proficient invasive cancer cells prevented cell invasion and metastasis formation. The activation of ErbB-2/3 regulates FAK phosphorylation at Tyr-397, -861, and -925. ErbB-induced oncogenic transformation correlates with the ability of FAK to restore ErbB-2/3-induced mitogen-activated protein kinase (MAPK) activation; the inhibition of MAPK prevented oncogenic transformation. In contrast, the inhibition of Src but not MAPK prevented ErbB-FAK-induced chemotaxis. In migratory cells, activated ErbB-2/3 receptors colocalize with activated FAK at cell protrusions. This colocalization requires intact FAK. In summary, distinct FAK signaling has an essential function in ErbB-induced oncogenesis and invasiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号