首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A uracil specific DNA N-glycosidase activity has been partially purified from crude extracts of Bacillus subtilis. The enzyme has a molecular weight of approximately 24 000 with no subunit structure. It has no requirement for any known cofactors but is inhibited in the presence of Co2+, Fe2+, or Zn2+. The enzyme is specific for uracil in single- and double-stranded deoxyribonucleopolymers and does not release free uracil from RNA or from poly(rU):poly(dA). In addition, neither Udr, dUMP, nor dUTP is recognized as substrate. The enzyme will attack small poly(dU) oligomers but the minimum size recognized as substrate is (pU)4. This enzyme may have a role in the repair (by base excision) or uracil in DNA arising either by incorporation during DNA synthesis or by deamination of cytosine in DNA.  相似文献   

2.
A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.  相似文献   

3.
Calcitonin gene-related peptide (CGRP) immunoreactive material has been found in extracts of the intestine, however, the structure of intestinal CGRP is not known. Analytical reverse phase HPLC and ion-exchange FPLC revealed one predominant immunoreactive CGRP peak in rabbit intestinal extracts. This material was purified from rabbit intestine by sequential steps of reverse phase HPLC and ion-exchange FPLC. Microsequence and mass spectral analysis of the purified peptide and its chymotryptic fragments were consistent with the structure: GCNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSEAF-amide. Rabbit intestinal CGRP is identical to human CGRP-II in 35 of 37 amino acid residues. Two amino acid differences were detected at position 1, with Gly in rabbit CGRP instead of Ala in human CGRP-II, and at position 35, with Glu instead of Lys, respectively. Rabbit CGRP differed from human CGRP-I by three additional amino acids at positions 3, 22, and 25. This report shows that a CGRP form which closely resembles human CGRP-II, by means of chemical characterization, is the predominant form in rabbit intestine. Rabbit CGRP is the only CGRP form which has Gly as the amino terminal amino acid. Since the amino terminus of CGRP seems to be important for expression of bioactivity, the biological activity of rabbit CGRP may differ from human, rat and porcine CGRP.  相似文献   

4.
The solution conformation of two peptides [1: PSGSNIISNLFKED; 2: GSSTLTALTTSVLKNNL] from human CD81 (hCD81) large extra-cellular loop (LEL) with known importance in the hepatitis C virus glycoprotein E2 (HCV-E2) binding interaction was characterized using circular dichroism spectroscopy. In addition, the solution structure of peptide 1 that contains a phenylalanine residue (F186 in hCD81) known to be critical in the binding interaction with HCV-E2 was determined using 1D and 2D 1H NMR spectroscopy. Both peptides are unstructured in water but begin forming significant helical conformation following the addition of 20% or more trifluoroethanol (v/v), a result consistent with their alpha-helical conformation found in the native protein. The CD data recorded as a function of pH and NaCl concentration are consistent with stabilization of the helical structure from electrostatic forces for both peptides. Peptide 1 is able to block the binding interaction of recombinant HCV-E2 (rHCV-E2) to hCD81 expressed on Molt-4 T cells at high concentrations (3.5 mM), a low affinity that we attributed to the random coil structure in water.  相似文献   

5.
Pleurocidin is an antimicrobial peptide that was isolated from the mucus membranes of winter flounder (Pseudopleuronectes americanus) and contributes to the initial stages of defense against bacterial infection. From NMR structural studies with the uniformly (15)N-labeled peptide, a structure of pleurocidin was determined to be in a random coil conformation in aqueous solution whereas it assumes an alpha-helical structure in TFE and in dodecylphosphocholine (DPC) micelles. From (15)N relaxation studies, the helix is a rigid structure in the membrane-mimicking environment. Strong NOESY cross-peaks from the pleurocidin to the aliphatic chain on DPC confirm that pleurocidin is contained within the DPC micelle and not associated with the surface of the micelle. From diffusion studies it was determined that each micelle contains at least two pleurocidin molecules.  相似文献   

6.
L M Boxer  D Korn 《Biochemistry》1979,18(21):4742-4749
We have purified the DNA polymerase from Mycoplasma orale to homogeneity. The protein structure of the enzyme was declined by sodium dodecyl sulfate gel electrophoresis, which revealed a single band of 116 000 daltons that was coincident with the polymerase activity profile in the final step of DNA--cellulose chromatography, and by two-dimensional gel analysis, which demonstrated a single protein species at pI = 6.8 that was congruent with enzyme activity and contained the same 116 000 polypeptide. although severe enzyme aggregation occurs during nondenaturing gel electrophoresis, a monomer species can be resolved with a Mr of 140 000 by the Ferguson plot analysis. Gel filtration and velocity gradient centrifugation yield a Stokes radius of 4.8 nm and a sedimentation coefficient of 5.6 S, respectively, from which Mr values of 106 000--128 000 can be computed. The different size values suggest that the polymerase molecule is asymmetric. The purified enzyme has a specific activity of approximately 6 x 10(5) units/mg of protein and in completely devoid of exodeoxyribonuclease and endodeoxyribonuclease activities, at exclusion limits of 10(-4)--10(-6%) of the polymerase activity. The mechanism of polymerization is moderately processive, with an average of 14 +/- 4 nucleotides incorporated per binding event, and the "effective template length" on activated DNA is approximately 40 nucleotides.  相似文献   

7.
Structural and chemical characterization of isolated centrosomes   总被引:30,自引:0,他引:30  
A procedure adapted from that described by Mitchison and Kirschner [Nature 312:232-237, 1984] was used to isolate centrosomes from human lymphoid cells. High yields of homogeneous centrosomes (60% of the theoretical total, assuming one centrosome per cell) were obtained. Centrosomes were isolated as pairs of centrioles, plus their associated pericentriolar material. Ultrastructural investigation revealed: 1) a link between both centrioles in a centrosome formed by the gathering in of a unique bundle of thin filaments surrounding each centriole; 2) a stereotypic organization of the pericentriolar material, including a rim of constant width at the proximal end of each centriole and a disc of nine satellite arms organized according to a ninefold symmetry at the distal end and; 3) an axial hub in the lumen of each centriole at the distal end surrounded by some ill-defined material. The total protein content was 2 to 3 X 10(-2) pg per isolated centrosome, a figure that suggests that the preparations were close to homogeneity. The protein composition was complex but specific, showing proteins ranging from 180 to 300 kD, one prominent band at 130 kD, and a group of proteins between 50 and 65 kD. Actin was also present in centrosome preparations. Functional studies demonstrated that the isolated centrosomes were competent to nucleate microtubules in vitro from purified tubulin in conditions in which spontaneous assembly could not occur. They were also very effective at inducing cleavage when microinjected into unfertilized Xenopus eggs.  相似文献   

8.
Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F   总被引:48,自引:0,他引:48  
Endo-beta-N-acetylglucosaminidase F (Endo F) and peptide:N-glycosidase F (PNGase F) were purified from cultures of Flavobacterium meningosepticum by ammonium sulfate precipitation followed by gel filtration on TSK HW-55(S). This system separated the two enzymes and provided PNGase F in a high state of purity, but the basis for the resolution appeared to be hydrophobic interaction and not molecular size. Studies using purified Endo F and PNGase F with defined glycopeptides demonstrated that Endo F was somewhat similar to Endo H in that it hydrolyzed many, but not all, high-mannose and hybrid oligosaccharides, as well as complex biantennary oligosaccharides. PNGase F, in contrast, hydrolyzed all classes of asparagine-linked glycans examined, provided both the alpha-amino and carboxyl groups of the asparagine residue were in peptide linkage. Deglycosylation studies with PNGase F revealed that many proteins in their native conformation were susceptible to this enzyme but that prior denaturation in sodium dodecyl sulfate greatly decreased the amount of enzyme required for complete carbohydrate removal.  相似文献   

9.
The formation of the N-terminal beta-hairpin of ubiquitin is thought to be an early event in the folding of this small protein. Previously, we have shown that a peptide corresponding to residues 1-17 of ubiquitin folds autonomously and is likely to have a native-like hairpin register. To investigate the causes of the stability of this fold, we have made mutations in the amino acids at the apex of the turn. We find that in a peptide where Thr9 is replaced by Asp, U(1-17)T9D, the native conformation is stabilized with respect to the wild-type sequence, so much so that we are able to characterize the structure of the mutant peptide fully by NMR spectroscopy. The data indicate that U(1-17)T9D peptide does indeed form a hairpin with a native-like register and a type I turn with a G1 beta-bulge, as in the full-length protein. The reason for the greater stability of the U(1-17)T9D mutant remains uncertain, but there are nuclear Overhauser effects between the side chains of Asp9 and Lys 11, which may indicate that a charge-charge interaction between these residues is responsible.  相似文献   

10.
We hereby report on a mutational analysis of a novel natriuretic peptide (PNP), recently isolated by us from the Iranian snake venom. The PNP variant (mutPNP) with four substitutions (G16T, K18S, R21S, G23R) and a disulfide bonded ring shortened by 3 residues. mutPNP peptide was expressed in pET32 and purified by affinity separation on nickel resin followed by RP-HPLC chromatography. The conformation of mutPNP was characterized in solution by 1H nuclear magnetic resonance spectroscopy, where it was found that the 14-residue disulfide bonded ring, like the 17-residue ring in PNP, retains a high degree of conformational flexibility. The conformation of mutPNP bound to NPR-C receptor was predicted by homology protein structure modeling. When injected intravenously into rats, mutPNP, in contrast to PNP had no physiological effect on blood pressure or on diuresis. The loss of physiological activity is explained in terms of the modeled bound conformation and the ensemble of solution conformations obtained using the NMR constraints.  相似文献   

11.
A homogeneous, tartrate-inhibitable acid phosphatase (AcPase) was obtained from the liver of channel catfish (Ictalurus punctatus) by the use of Affi Gel-10-coupled aminohexyltartramic acid affinity chromatography. The enzyme has a molecular weight of 82,500 and is a dimer consisting of two apparently equivalent subunits with subunit weights of 35,000 +/- 3000. Amino acid composition data are presented and compared with those of mammalian acid phosphatases. Data suggest that the enzyme is a metalloacid phosphatase. Catfish liver AcPase exhibits two molecular forms with pI 5.66 and 5.37 which were separated by chromatofocusing. A spontaneous conversion of the less acidic form to a more acidic form was observed and this conversion was accompanied by a decreased sensitivity towards tartrate inhibition.  相似文献   

12.
We investigated the ability of two enzymes, peptide N-glycosidase F (PNGase F) and endo-beta-N-acetylglucosaminidase F (Endo F), to deglycosylate microgram quantities of bovine TSH and its subunits under nondenaturing conditions. One oligosaccharide chain could be selectively removed from the alpha subunit by PNGase F, and all the oligosaccharide chains from both subunits could be removed by Endo F. These methods of enzymatic deglycosylation should permit study of the functional role of each N-linked carbohydrate chain of various glycoprotein hormones.  相似文献   

13.
The glycoprotein fibrinogen was deglycosylated in its native state and in the absence of protease inhibitors by peptide N-glycosidase F following removal of protease contaminants from the enzyme by HPLC. Fibrinogen is sensitive both to proteolysis by contaminants which may constitute as little as 0.2% of the enzyme protein and to denaturation by 1,10-o-phenanthroline, the only substance known to inhibit the proteolysis. Thus removal of protease contaminants from the enzyme is a prerequisite for the deglycosylation of native fibrinogen. The starting material for the present method is the final material obtained from the purification described by A. L. Tarentino, C. M. Gomez, and T. H. Plummer (1985, Biochemistry 24, 4565). Three sequential passages over a PolyCAT A (20 X .46 cm) cation-exchange column and elutions with a linear gradient of NaCl from 0 to 0.4 M were necessary to completely overcome the tenacious but noncovalent association of peptide N-glycosidase F with contaminants that proteolyze fibrinogen. All three chromatographic runs could be completed in 1 day. Using this "protease-free" enzyme at up to a 1:20 molar ratio, fibrinogen that is completely deglycosylated and native has been generated in order to determine the role of the carbohydrate moieties in its function.  相似文献   

14.
The N-terminal domain of human immunodeficiency virus (HIV-1) integrase (IN) contains the sequence motif His-Xaa3-His-Xaa23-Cys-Xaa2-Cys, which is strongly conserved in all retroviral and retrotransposon IN proteins. This structural motif constitutes a putative zinc finger in which a metal ion may be coordinately bound by the His and Cys residues. A recombinant peptide, IN(1-55), composed of the N-terminal 55 amino acids of HIV-1 IN was expressed in Escherichia coli and purified. Utilizing a combination of techniques including UV-visible absorption, circular dichroism, Fourier transform infrared, and fluorescence spectroscopies, we have demonstrated that metal ions (Zn2+, Co2+, and Cd2+) are bound with equimolar stoichiometry by IN(1-55). The liganded peptide assumes a highly ordered structure with increased alpha-helical content and exhibits remarkable thermal stability. UV-visible difference spectra of the peptide-Co2+ complexes directly implicate thiols in metal coordination, and Co2+ d-d transitions in the visible range indicate that Co2+ is tetrahedrally coordinated. Mutant peptides containing conservative substitutions of one of the conserved His or either of the Cys residues displayed no significant Zn(2+)-induced conformational changes as monitored by CD and fluorescence spectra. We conclude that the N terminus of HIV-1 IN contains a metal-binding domain whose structure is stabilized by tetrahedral coordination of metal by histidines 12 and 16 and cysteines 40 and 43. A preliminary structural model for this zinc finger is presented.  相似文献   

15.
Bacteriocins are bacterial peptides with specific activity against competing species. They hold great potential as natural preservatives and for their probiotic effects. We show here nuclear magnetic resonance-based evidence that glycocin F, a 43-amino acid bacteriocin from Lactobacillus plantarum, contains two β-linked N-acetylglucosamine moieties, attached via side chain linkages to a serine via oxygen, and to a cysteine via sulfur. The latter linkage is novel and has helped to establish a new type of post-translational modification, the S-linked sugar. The peptide conformation consists primarily of two α-helices held together by a pair of nested disulfide bonds. The serine-linked sugar is positioned on a short loop sequentially connecting the two helices, while the cysteine-linked sugar presents at the end of a long disordered C-terminal tail. The differing chemical and conformational stabilities of the two N-actetylglucosamine moieties provide clues about the possible mode of action of this bacteriostatic peptide.  相似文献   

16.
The crystal structure of the bidomain PCP-C from modules 5 and 6 of the nonribosomal tyrocidine synthetase TycC was determined at 1.8 A resolution. The bidomain structure reveals a V-shaped condensation domain, the canyon-like active site groove of which is associated with the preceding peptidyl carrier protein (PCP) domain at its donor side. The relative arrangement of the PCP and the peptide bond-forming condensation (C) domain places the active sites approximately 50 A apart. Accordingly, this PCP-C structure represents a conformational state prior to peptide transfer from the donor-PCP to the acceptor-PCP domain, implying the existence of additional states of PCP-C domain interaction during catalysis. Additionally, PCP-C exerts a mode of cyclization activity that mimics peptide bond formation catalyzed by C domains. Based on mutational data and pK value analysis of active site residues, it is suggested that nonribosomal peptide bond formation depends on electrostatic interactions rather than on general acid/base catalysis.  相似文献   

17.
Endo-beta-N-acetylglucosaminidase F preparations from Flavobacterium meningosepticum have been found to contain peptide:N-glycosidase activity. Only the second activity, designated as peptide:N-glycosidase F, readily cleaves the beta-aspartylglycosylamine linkage of a fetuin triantennary complex glycopeptide, as shown by the isolation of the corresponding carbohydrate-free peptide containing aspartic acid and of an intact oligosaccharide with a di-N-acetylchitobiosyl moiety at the reducing end. Both activities in the mixture will hydrolyze a high mannose octaglycopeptide from ovalbumin, with the type of product formed being influenced by pH. At pH 4.0, only the endo-beta-N-acetylglucosaminidase F activity is functional, releasing octapeptide-GlcNAc and oligosaccharide-GlcNAc. At pH 9.3, the predominant cleavage is by peptide:N-glycosidase F at the glycosylamine bond, releasing octapeptide and oligosaccharide-GlcNAc-GlcNAc. This latter oligosaccharide is then hydrolyzed by endo-beta-N-acetylglucosaminidase F to oligosaccharide-GlcNAc plus GlcNAc.  相似文献   

18.
19.
beta-Defensins are mammalian antimicrobial peptides that share a unique disulfide-bonding motif of six conserved cysteines. An intragenic polymorphism of the DEFB1 gene that changes a highly conserved Cys to Ser in the peptide coding region has recently been described. The deduced peptide cannot form three disulfide bonds, as one of the cysteines is unpaired. We have determined the cysteine connectivities of a corresponding synthetic hBD-1(Ser35) peptide, investigated the structure by circular dichroism spectroscopy, and assayed the in vitro antimicrobial activity. Despite a different arrangement of the disulfides, hBD-1(Ser35) proved as active as hBD-1 against the microorganisms tested. This activity likely depends on the ability of hBD-1(Ser35) to adopt an amphipathic conformation in hydrophobic environment, similar to the wild type peptide, as suggested by CD spectroscopy.  相似文献   

20.
Glucocerebrosidase was purified from human cultured dermal fibroblasts more than 2200-fold to apparent homogeneity using high performance Alkyl-Superose HR 5/5 hydrophobic interaction and Bio-Sil TSK-250 gel permeation column chromatography. Sodium dodecyl sulfate--polyacrylamide gel electrophoresis and protein staining of the catalytically active and concentrated enzyme fractions from the gel permeation columns revealed the presence of one band of Mr 64,000. The glucocerebrosidase preparation purified to homogeneity was digested with peptide N-glycosidase F that cleaves N-linked oligosaccharide structures from glycoproteins. The molecular weight of glucocerebrosidase after digestion with peptide N-glycosidase F was reduced to Mr 57,000, suggesting that the mature enzyme is a glycoprotein and that N-linked oligosaccharide constitutes a minimum of about 10% of the total molecular weight of the polypeptide. These findings are compatible with the hypothesis that glucocerebrosidase was initially synthesized as a precursor polypeptide which was subsequently glycosylated to become the mature enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号