首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Phototrophic bacterial mats from Kiran soda lake (south-eastern Siberia) were studied using integrated approach including analysis of the ion composition of water, pigments composition, bacterial diversity and the vertical distribution of phototrophic microorganisms in the mats. Bacterial diversity was investigated using microscopic examination, 16S rRNA gene Illumina sequencing and culturing methods. The mats were formed as a result of decomposition of sedimented planktonic microorganisms, among which cyanobacteria of the genus Arthrospira predominated. Cyanobacteria were the largest part of phototrophs in the mats, but anoxygenic phototrophs were significant fraction. The prevailing species of the anoxygenic phototrophic bacteria are typical for soda lakes. The mats harbored aerobic anoxygenic phototrophic bacteria, purple sulfur and non-sulfur bacteria, as well as new filamentous phototrophic Chloroflexi. New strains of Thiocapsa sp. Kir-1, Ectothiorhodospira sp. Kir-2 and Kir-4, Thiorhodospira sp. Kir-3 and novel phototrophic Chloroflexi bacterium Kir15-3F were isolated and identified.

  相似文献   

2.
The multi-layered microbial mats in the sand flats of Great Sippewissett Salt Marsh were found to have five distinct layers of phototrophic organisms. The top 1–3 mm contained oxygenic phototrophs. The lower 3–4 mm contained anoxygenic phototrophic bacteria. The uppermost gold layer contained diatoms and cyanobacteria, and chlorophyll a was the major chlorophyll. The next layer down was green and was composed of primarily filamentous cyanobacteria containing chlorophyll a. This was followed by a bright pink layer of bacteriochlorophyll b-containing purple sulfur bacteria. The lowest layer was a thin dull green layer of green sulfur bacteria containing bacteriochlorophyll c. The distribution of the chlorophylls with depth revealed that two-thirds of the total chlorophyll in the mat was composed of bacteriochlorophylls present in the anoxygenic phototrophys. The cyanobacterial layers and both purple sulfur bacterial layers had photoautotrophic activity. Light was attenuated in the uppermost layers so that less than 5% of the total radiation at the surface penetrated to the layers of anoxygenic phototrophys.  相似文献   

3.
Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, and salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54°C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected in the samples from both the thermophilic and mesophilic mats. Cultures of nonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolated from the mats developed at high (50.6–49.4°C) and low temperatures (45–20°C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealed in low-temperature mats. Truly thermophilic purple and green sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfur communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophyll a-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20°C) mat is of interest.  相似文献   

4.
The spectral irradiance from 400 to 1,100 nm was measured with depth in the intertidal sand mats at Great Sippewissett Salt Marsh, Mass. These mats contained at least four distinct layers, composed of cyanobacteria, purple sulfur bacteria containing bacteriochlorophyll a (Bchl a), purple sulfur bacteria containing Bchl b, and green sulfur bacteria. Spectral irradiance was measured directly by layering sections of mat on a cosine receptor. Irradiance was also approximated by using a calibrated fiber-optic tip. With the tip, irradiance measurements could be obtained at depth intervals less than 250 μm. The irradiance spectra were correlated qualitatively and quantitatively with the distribution of the diverse chlorophyll pigments in this mat and were compared with spectra recorded in plain sand lacking pigmented phototrophs. We found that the shorter wavelengths (400 to 550 nm) were strongly attenuated in the top 2 mm of the mat. The longer wavelengths (red and near infrared) penetrated to much greater depths, where they were attenuated by Bchl a, b, and c-containing anoxygenic phototrophic bacteria. The specific attenuation bands in the irradiance spectra correlated with the specific in vivo absorption bands of the Bchl-protein complexes in the bacteria. We concluded that the pigments in the phototrophs had a profound affect on the light environment within the mat. It seems likely that the diverse Bchl-protein complexes found in the anoxygenic phototrophs evolved in dense mat environments as a result of competition for light.  相似文献   

5.
The microzination of phototrophic bacteria in a flat laminated microbiol mat at Great Sippewissett Salt Marsh on Cape Cod, Massachusetts, was studied using a combination of scanning and transmission electron microscopy, light microscopy and photosynthetic pigment analysis. Comparison of pigment content and ultrastructural information from electron microscopy of thin sections allowed us to determine the major groups of photosynthetic bacteria present. The approximately 1-cm-thick mat is located in sandy intertidal sediments of the marsh and comprised four to five distinctly colored layers. The uppermost brown layer contained Lyngbya, Nostoc, Phormidium (cyanobacteria) and Navicula (diatom) species. An intermediate bluish-green layer was dominated by Oscillatoria species. A central pink layer contained purple sulfur bacteria such as Amoebobacter, Thiocapsa, Chromatium and Thiocystis species, Below this was a distinctive orange layer, formed largely by one species of purple sulfur bacteria, Thiocapsa pfennigii. The lowermost and thinnest layer contained green sulfur bacteria of the genus Prosthecochloris, a very small prosthecate species with numerous knobby projections; this layer was not always present. Below this, where pigments were generally absent, were dark gray and black iron sulfide-rich sediments. Remnants of older decayed mats could be found deeper in the sediment. Extensive production of microbial extracellular polymers in all layers appeared to be responsible for attachment of cells to sand grains, for lamination of layers and for structural integrity of the mat as a whole. Below the layer of green sulfur bacteria, binding of sediment by microbial polymers ceased abruptly. Possibly in response to decreasing light penetration, the mean size of bacterial cells decreased in successively deeper layers. In the lowest layer where light penetration was very low, green sulfur bacteria with highly convoluted surfaces occurred. The increase in cell surface area-to-volume ratio may allow such organisms to survive at low light levels.  相似文献   

6.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February-March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 10(7) cells/ml in summer and 10(6) cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every five centimeters. A five-centimeter-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 x 10(8) cells/ml. Their number in winter was 3 x 10(5) cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 x 10(2) cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

7.
Sediment samples collected from coastal lagoons on the French Mediterranean (Prévost Lagoon) and Atlantic coasts (Arcachon Bay and Certes fishponds) have been studied in order to determine the population densities and the species diversity of the different groups of anoxygenic phototrophic bacteria (purple sulfur bacteria, purple nonsulfur bacteria and green sulfur bacteria) present in these ecosystems. Several strains of each group were isolated in pure culture and characterized by their physiological properties. The occurrence of purple nonsulfur bacteria in organic rich sediments of the Arcachon Bay and the dominance of purple sulfur bacteria in the Prévost lagoon and Certes fishponds are discussed with respect to their community structure and abundance. The diversity differences of the phototrophic bacterial strains isolated from both environments are also discussed.  相似文献   

8.
Abstract A saltern near La Baule (Bretagne, France) was remodeled in a programmable temperature and humidity controlled walk-in environmental chamber resembling the characteristics of the original saltern. The saltern showed different types of microbial mats predominantly composed of algae, oxy- and anoxyphotobacteria, and associated chemoorganotrophic bacteria, fungi and animals. Well-developed microbial mats were found up to a salinity of 10% during the three or four months in summer when salinity gradients and NaCl precipitation were established. The main phototrophic organisms were diatoms, the cyanobacteria Aphanothece, Microcoleus, Spirulina , and Oscillatoria , and Chromatiaceae. At higher salinity, Halobacterium sp., diatoms, and Dunaliella were dominant. Typical microbial mats and saltern-typical invertebrate, algal and bacterial species also developed in the saltern model, building up a stable community. The ionic composition of the brines and physicochemical parameters were similar to those determined for the original saltern. Different photosynthetic organisms, e.g. a filamentous purple bacterium and a hypersaline Chloroflexus -like organism, could be enriched within the microbial mats by changing the light regime.  相似文献   

9.
The year-to-year variations of vertical distribution and biomass of anoxic phototrophic bacteria were studied during ice periods 2003–2005 and 2007–2008 in meromictic lakes Shira and Shunet (Southern Siberia, Russian Federation). The bacterial layers in chemocline of both lakes were sampled with a thin-layer hydraulic multi-syringe sampler. In winter, biomass of purple sulphur bacteria varied considerably depending on the amount of light penetrating into the chemocline through the ice and snow cover. In relatively weakly stratified, brackish Shira Lake, the depth of chemocline varied between winters, so that light intensity for purple sulphur bacteria inhabiting this zone differed. In Shira Lake, increased transparency of mixolimnion in winter, high chemocline position and absence of snow resulted in light intensity and biomass of purple sulphur bacteria exceeding the summer values in the chemocline of the lake. We could monitor snow cover at the lake surface using remote sensing and therefore estimate dynamics and amount of light under ice and its availability for phototrophic organisms. In Shunet Lake, the light intensities in the chemocline and biomasses of purple sulphur bacteria were always lower in winter than in summer, but the biomasses of green sulphur bacteria were similar.  相似文献   

10.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

11.
Microbial communities of stratified phototrophic bacteria in laminated intertidal sediments north of Estuary El Puente, near San Carlos, Baja California Sur, Mexico,‐were studied. This study describes the macroscopic and microscopic characteristics of the mats, including their annual growth. The mats were located in and along meandering mangrove‐lined tidal channels. Their thickness ranged from 0.5 to 25 cm. Square‐meter areas of polygonal mats were detected in several ponds infiltrated by sea water. The principal microbial community of the upper surface of various morphotypes of microbial mats was identified as cyanobacteria belonging to the genera Microcoleus, Lyngbya, Phormidium, and Oscillatoria. Other cyanobacte‐rial genera such as Pseudanabaena, Spirulina, Synechococcus, and Gloeocapsa, as well as many unidentified diatoms, were also present but at lower population densities. The second inward reddish layers of the microbial mats contained similar cyano‐bacterial genera plus anoxygenic phototrophic bacteria belonging to the genera Chloroflexus, Thiocapsa, Chromatium, Prosthecochloris, Rhodopseudomonas, and Chlorobium, as well as several unidentified bacteria. In situ measurements on the growth of the mats, from intermittent tide sites, showed an annual buildup of two layers: green and reddish. These layers corresponded to a vertical growth of 1.4 ± 0.27 mm/year. Permanently submerged mats did not show vertical growth during the same period of time.  相似文献   

12.
On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.  相似文献   

13.
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor.  相似文献   

14.
A novel selective enrichment method is described for phototrophic green sulfur bacteria even in the presence of purple sulfur and purple nonsulfur bacteria using sulfanilate, which was discovered during efforts to selectively isolate sulfanilate-metabolizing anoxygenic phototrophic bacteria from marine habitats. Samples for these experiments were obtained from beaches, saltpans, subsurface mangrove soils, fish and prawn aquaculture ponds and backwaters of the East and West coasts of India. Photoorganoheterotrophic and photolithoautotrophic enrichments in the absence of sulfanilate predominantly yielded purple bacterial enrichments. In contrast, photolithoautotrophic enrichments in the presence of sulfanilate yielded green-colored enrichments from the same samples. Whole cell absorption spectra of the enrichment cultures revealed the presence of bacteriochlorophyll c and thus green phototrophic bacteria. Microscopic observation demonstrated the presence of sulfur globules outside the bacterial cells and the presence of non-motile cells, some of which had prosthecae. 16S rDNA sequences obtained from green sulfur bacterial strains isolated from enrichment cultures confirmed the presence of representatives of the green sulfur bacterial genera Prosthecochloris and Chlorobaculum. The selective pressure of sulfanilate exerted through inhibition of phototrophic purple sulfur bacteria was demonstrated by inhibition studies using the purple sulfur bacteria Marichromatium indicum JA100 and Marichromatium sp. JA120 (JCM 13533) and the green sulfur bacterium Prosthecochloris sp. JAGS6 (JCM 13299).  相似文献   

15.
The anoxygenic phototrophic bacterial community of the brackish meromictic Lake Shira (Khakassia) was investigated in August 2001, July 2002, and February-March 2003. In all the periods of investigation, the prevailing microorganisms were purple sulfur bacteria similar to Lamprocystis purpurea in morphology and pigment composition. Their highest number (3 x 10(5) cells/ml) was recorded in July 2002 at the depth of 15 m. According to 16S rRNA gene analysis, the strain of purple sulfur bacteria isolated in 2001 and designated ShAm01 exhibited 98.6% similarity to the type strain of Thiocapsa roseopersicina and 94.4-97.1% similarity to the type strains of Tca. pendens, Tca. litoralis, and Tea. rosea. The minor microorganisms of the anoxygenic phototrophic bacterial community within the period of investigation were nonsulfur purple bacteria phylogenetically close to Rhodovulum strictum (98.3% similarity, strain ShRb01), Ahrensia kielensis (of 93.9% similarity, strain ShRb02), Rhodomicrobium vannieli (of 99.7% similarity, strain ShRmc01), and green sulfur bacteria, phylogenetically close to Chlorobium limicola (of 98.7% similarity, strain ShCl03).  相似文献   

16.
Microbialite‐forming microbial mats in a hypersaline lake on the atoll of Kiritimati were investigated with respect to microgradients, bulk water chemistry, and microbial community composition. O2, H2S, and pH microgradients show patterns as commonly observed for phototrophic mats with cyanobacteria‐dominated primary production in upper layers, an intermediate purple layer with sulfide oxidation, and anaerobic bottom layers with sulfate reduction. Ca2+ profiles, however, measured in daylight showed an increase of Ca2+ with depth in the oxic zone, followed by a sharp decline and low concentrations in anaerobic mat layers. In contrast, dark measurements show a constant Ca2+ concentration throughout the entire measured depth. This is explained by an oxygen‐dependent heterotrophic decomposition of Ca2+‐binding exopolymers. Strikingly, the daylight maximum in Ca2+ and subsequent drop coincides with a major zone of aragonite and gypsum precipitation at the transition from the cyanobacterial layer to the purple sulfur bacterial layer. Therefore, we suggest that Ca2+ binding exopolymers function as Ca2+ shuttle by their passive downward transport through compression, triggering aragonite precipitation in the mats upon their aerobic microbial decomposition and secondary Ca2+ release. This precipitation is mediated by phototrophic sulfide oxidizers whose action additionally leads to the precipitation of part of the available Ca2+ as gypsum.  相似文献   

17.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

18.
Filamentous bacteria containing bacteriochlorophylls c and a were enriched from hypersaline microbial mats. Based on phylogenetic analyses of 16S rRNA gene sequences, these organisms form a previously undescribed lineage distantly related to Chloroflexus spp. We developed and tested a set of PCR primers for the specific amplification of 16S rRNA genes from filamentous phototrophic bacteria within the kingdom of "green nonsulfur bacteria." PCR products recovered from microbial mats in a saltern in Guerrero Negro, Mexico, were subjected to cloning or denaturing gradient gel electrophoresis and then sequenced. We found evidence of a high diversity of bacteria related to Chloroflexus which exhibit different distributions along a gradient of salinity from 5.5 to 16%.  相似文献   

19.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

20.
In situ poly(hydroxyalkanoate) (PHA) levels and repeating-unit compositions were examined in stratified photosynthetic microbial mats from Great Sippewissett Salt Marsh, Mass., and Ebro Delta, Spain. Unlike what has been observed in pure cultures of phototrophic bacteria, the prevalence of hydroxyvalerate (HV) repeating units relative to hydroxybutyrate (HB) repeating units was striking. In the cyanobacteria-dominated green material of Sippewissett mats, the mole percent ratio of repeating units was generally 1HB:1HV. In the purple sulfur bacteria-dominated pink material the relationship was typically 1HB:2HV. In Sippewissett mats, PHA contributed about 0.5 to 1% of the organic carbon in the green layer and up to 6% in the pink layer. In Ebro Delta mats, PHA of approximately 1HB:2HV-repeating-unit distribution contributed about 2% of the organic carbon of the composite photosynthetic layers (the green and pink layers were not separated). Great Sippewissett Salt Marsh mats were utilized for more extensive investigation of seasonal, diel, and exogenous carbon effects. When the total PHA content was normalized to organic carbon, there was little seasonal variation in PHA levels. However, routine daily variation was evident at all sites and seasons. In every case, PHA levels increased during the night and decreased during the day. This phenomenon was conspicuous in the pink layer, where PHA levels doubled overnight. The daytime declines could be inhibited by artificial shading. Addition of exogenous acetate, lactate, and propionate induced two- to fivefold increases in the total PHA levels when applied in the daylight but had no effect when applied at night. The distinct diel pattern of in situ PHA accumulation at night appears to be related, in some phototrophs, to routine dark energy metabolism and is not influenced by the availability of organic nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号