共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. 总被引:3,自引:1,他引:3 下载免费PDF全文
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen. 相似文献
3.
4.
5.
Lopes Pinto F Erasmie S Blikstad C Lindblad P Oliveira P 《Journal of plant physiology》2011,168(16):1934-1942
In prokaryotes, cell division is normally achieved by binary fission, and the key player FtsZ is considered essential for the complete process. In cyanobacteria, much remains unknown about several aspects of cell division, including the identity and mechanism of the various components involved in the division process. Here, we report results obtained from a search of the players implicated in cell division, directly associating to FtsZ in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Histidine tag pull-downs were used to address this question. However, the main observation was that FtsZ is a target of proteolysis. Experiments using various cell-free extracts, an unrelated protein, and protein blot analyses further supported the idea that FtsZ is proteolytically cleaved in a specific manner. In addition, we show evidence that both FtsZ termini seem to be equally prone to proteolysis. Taken together, our data suggest the presence of an unknown player in cyanobacterial cell division, opening up the possibility to investigate novel mechanisms to control cell division in Anabaena PCC 7120. 相似文献
6.
HetR is the master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. Genetic selection was used to identify 33 amino acid substitutions in HetR that reduced the proportion of cells undergoing heterocyst differentiation to less than 2%. Conservative substitutions in the wild-type HetR protein revealed three mutations that dramatically reduced the amount of heterocyst differentiation when the mutant allele was present in place of the wild-type allele on a replicating plasmid in a mutant lacking hetR on the chromosome. An H69Y substitution resulted in heterocyst formation among less than 0.1% of cells, and D17E and G36A substitutions resulted in a Het- phenotype, compared to heterocyst formation among approximately 25% of cells with the wild-type hetR under the same conditions. The D17E substitution prevented DNA binding activity exhibited by wild-type HetR in mobility shift assays, whereas G36A and H69Y substitutions had no affect on DNA binding. D17E, G36A, and H69Y substitutions also resulted in higher levels of the corresponding HetR protein than of the wild-type protein when each was expressed from an inducible promoter in a hetR deletion strain, suggesting an effect on HetR protein turnover. Surprisingly, C48A and S152A substitutions, which were previously reported to result in a Het- phenotype, were found to have no effect on heterocyst differentiation or patterning when the corresponding mutations were introduced into an otherwise wild-type genetic background in Anabaena sp. strain PCC 7120. The clustering of mutations that satisfied the positive selection near the amino terminus suggests an important role for this part of the protein in HetR function. 相似文献
7.
As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N(2). 相似文献
8.
9.
Activities of two dissimilar thioredoxins from the cyanobacterium Anabaena sp. strain PCC 7120. 下载免费PDF全文
F K Gleason 《Journal of bacteriology》1992,174(8):2592-2598
Thioredoxin is a small redox protein that functions as a reducing agent and modulator of enzyme activity. A gene for an unusual thioredoxin was previously isolated from the cyanobacterium Anabaena sp. strain PCC 7120 and cloned and expressed in Escherichia coli. However, the protein could not be detected in Anabaena cells (J. Alam, S. Curtis, F. K. Gleason, M. Gerami-Nejad, and J. A. Fuchs, J. Bacteriol. 171:162-171, 1989). Polyclonal antibodies to the atypical thioredoxin were prepared, and the protein was detected by Western immunoblotting. It occurs at very low levels in extracts of Anabaena sp. and other cyanobacteria. No antibody cross-reaction was observed in extracts of eukaryotic algae, plants, or eubacteria. The anti-Anabaena thioredoxin antibodies did react with another unusual thioredoxin-glutaredoxin produced by bacteriophage T4. Like the T4 protein and other glutaredoxins, the unusual cyanobacterial thioredoxin can be reduced by glutathione. The Anabaena protein can also activate enzymes of carbon metabolism and has some functional similarity to spinach chloroplast thioredoxin f. However, it shows only 23% amino acid sequence identity to the spinach chloroplast protein and appears to be distantly related to other thioredoxins. The data indicate that cyanobacteria, like plant chloroplasts, have two dissimilar thioredoxins. One is related to the more common protein found in other prokaryotes, and the other is an unusual thioredoxin that can be reduced by glutathione and may function in glucose catabolism. 相似文献
10.
11.
Isolation and sequence of the gene for ferredoxin I from the cyanobacterium Anabaena sp. strain PCC 7120. 总被引:6,自引:13,他引:6 下载免费PDF全文
The structural gene for ferredoxin I, petF, from the cyanobacterium Anabaena sp. strain PCC 7120 has been isolated from a recombinant lambda library. Mixtures of tetradecanucleotides and heptadecanucleotides, each containing all possible DNA sequences corresponding to two separate regions of the ferredoxin amino acid sequence, were synthesized and used as hybridization probes to identify a genomic clone containing the coding sequence for the petF gene. The sequence of the entire petF coding region and portions of the 3'- and 5'-flanking regions was determined. The DNA sequence of petF suggests that, in contrast to the nucleus-encoded plant protein, cyanobacterial apoferredoxin is not synthesized as a higher-molecular-weight precursor. The Anabaena petF gene is a single-copy gene. During growth on complete medium it was transcribed into a monocistronic mRNA species of approximately 500 bases that initiated 100 base pairs upstream from the petF coding region. 相似文献
12.
Protein tyrosine phosphorylation in the cyanobacterium Anabaena sp. strain PCC 7120. 总被引:1,自引:1,他引:1 下载免费PDF全文
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density. 相似文献
13.
Sazuka T 《Photosynthesis research》2003,78(3):279-291
A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation. 相似文献
14.
Growth of prokaryotes at reduced temperature results in the formation of a cold-adapted ribosome through association with de novo synthesized polypeptides. In vitro and in vivo phosphorylation studies combined with affinity purification and mass spectrometry identified that the phosphorylation status of translation elongation factor EF-Tu was altered in response to cold stress in the photosynthetic, Gram-negative cyanobacterium Anabaena sp. strain PCC 7120. In response to a temperature downshift from 30 to 20 degrees C, EF-Tu was rapidly and transiently hyperphosphorylated during the acclimation phase followed by a reduction in phosphorylation below background levels in response to prolonged exposure. EF-Tu was identified as a phosphothreonine protein. Unexpectedly, ribosomal protein S2 was also observed to be a phosphoprotein continuously phosphorylated during cold stress. The phosphorylation status of EF-Tu has previously been associated with translational regulation in other systems, with a reduction in translation elongation occurring in response to phosphorylation. These results provide evidence for a novel mechanism by which translation is initially downregulated in response to cold stress in Anabaena. 相似文献
15.
Abstract Whole cells of the dinitrogen-fixing cyanobacterium Anabaena sp. PCC7120 exhibited K m values for l -glutamine and l -glutamate of 33 μM and 0.5 mM, respectively. V max of uptake was ca. 30 nmol mg−1 (chlorophyll) min−1 for both amino acids. The similar pattern of sensitivity to other amino acids exhibited by both transport activities suggests that a common transport system is involved in glutamine and glutamate uptake by this cyanobacterium. 相似文献
16.
Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120 总被引:4,自引:2,他引:4 下载免费PDF全文
Two distinct types of hydrogenase occur in Anabaena 7120 and are distinguishable in whole filaments by the application of selective assay methods. A reversible hydrogenase occurs both in heterocysts and vegetative cells and can be selectively assayed by measuring H2 evolution from reduced methyl viologen. Activities in aerobically grown filaments were low but could be increased by 2 to 3 orders of magnitude by growing cells microaerobically. The presence of the reversible hydrogenase was independent of the N2-fixing properties of the organism, and activity did not respond to added H2 in the culture. Illumination was necessary during derepression of the reversible hydrogenase, and addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea increased the amount of enzyme that was synthesized. An uptake hydrogenase occurred only in heterocysts of aerobically grown filaments, but a small amount of activity also was present in the vegetative cells of filaments grown microaerobically with 20% H2. It was assayed selectively by measuring an oxyhydrogen reaction at atmospheric levels of O2. Additional uptake hydrogenase could be elicited by including H2 or by removing O2 from the sparging gas of a culture. 相似文献
17.
Manisha Banerjee Prashanth S. Raghavan Anand Ballal Hema Rajaram S. K. Apte 《Photosynthesis research》2013,118(1-2):59-70
Reactive oxygen species (ROS) are inevitably generated as by-products of respiratory/photosynthetic electron transport in oxygenic photoautotrophs. Unless effectively scavenged, these ROS can damage all cellular components. The filamentous, heterocystous, nitrogen-fixing strains of the cyanobacterium, Anabaena, serve as naturally abundant contributors of nitrogen biofertilizers in tropical rice paddy fields. Anabaena strains are known to tolerate several abiotic stresses, such as heat, UV, gamma radiation, desiccation, etc., that are known to generate ROS. ROS are detoxified by specific antioxidant enzymes like superoxide dismutases (SOD), catalases and peroxiredoxins. The genome of Anabaena PCC7120 encodes two SODs, two catalases and seven peroxiredoxins, indicating the presence of an elaborate antioxidant enzymatic machinery to defend its cellular components from ROS. This article summarizes recent findings and depicts important perspectives in oxidative stress management in Anabaena PCC7120. 相似文献
18.
19.
20.
Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. PCC 7120 总被引:4,自引:0,他引:4
A nuclease that could be recovered from the supernatant of cultures, as well as from cell-free extracts, of the cyanobacterium Anabaena sp. PCC 7120 was identified as a 29 kDa polypeptide by its ability to degrade DNA after electrophoresis in DNA-containing SDS-polyacrylamide gels. Some clones of a gene library of strain PCC 7120 established in Escherichia coli were found to produce the 29 kDa nuclease. The nucA gene encoding this nuclease was subcloned and sequenced. The deduced polypeptide, NucA, had a molecular weight of 29,650, presented a presumptive signal peptide in its N-terminal region and showed homology to the products of the nuc gene from Serratia marcescens and the NUC1 gene from Saccharomyces cerevisiae. The NucA protein from Anabaena itself, or from the cloned nucA gene expressed in E. coli, catalysed the degradation of both RNA and DNA, had the potential to act as an endonuclease, and functioned best in the presence of Mn2+ or Mg2+. An Anabaena nucA insertional mutant was generated which failed to produce the 29 kDa nuclease. 相似文献