首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucuna pruriens seeds are used in some countries as a human prophylactic oral anti-snake remedy. Aqueous extracts of M. pruriens seeds possess in vivo activity against cobra and viper venoms, and protect mice against Echis carinatus venom. It was recently demonstrated that the seed immunogen generating the antibody that cross-reacts with the venom proteins is a multiform glycoprotein (gpMuc), and the immunogenic properties of gpMuc seemed to mainly reside in its glycan chains. In the present study, gpMuc was found to contain only N-glycans. Part of the N-glycans could be released with peptide-(N 4-(N-acetyl-β -glucosaminyl)asparagine amidase F (PNGase F-sensitive N-glycans); the PNGase F-resistant N-glycans were PNGase A-sensitive. The oligosaccharides released were analyzed by a combination of MALDI-TOF mass spectrometry, HPLC profiling of 2-aminobenzamide-labelled derivatives and 1H NMR spectroscopy. The PNGase F-sensitive N-glycans comprised a mixture of oligomannose-type structures ranging from Man5GlcNAc2 to Man9GlcNAc2, and two xylosylated structures, Xyl1Man3GlcNAc2 and Xyl1Man4GlcNAc2. The PNGase A-sensitive N-glycans, containing (α 1-3)-linked fucose, were identified as Fuc1Xyl1Man2GlcNAc2 and Fuc1Xyl1Man3GlcNAc2. In view of the determined N-glycan ensemble, the immunoreactivity of gpMuc was ascribed to the presence of core (β 1-2)-linked xylose- and core α (1-3)-linked fucose-modified N-glycan chains.  相似文献   

2.
Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation pattern is a prerequisite. To this end N-glycans were released with peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via normal phase (Lichrosorb-NH2) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz 1H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man8GlcNAc2 to Man11GlcNAc2 including molecular isomers, could be established, and structures up to Man15GlcNAc2 were indicated. Phosphate-containing oligosaccharides ranged from Man9 PGlcNAc2 to Man13 PGlcNAc2. Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide structures are similar, but their relative amounts varied with the culturing media.  相似文献   

3.
An alternativeN-glycosylation pathway using Glc1–3Man5GlcNAc2 as a donor to be transferred to a protein acceptor is found either in Man-P-Dol synthase deficient cells or in wild type CHO cells grown in energy deprivation conditions. Discrimination between oligomannosides of this alternative pathway and oligomannosides of the major one containing the same number of sugar residues Man6–8GlcNAc2 required structural studies. Taking advantage of the specific chromatographic behaviour of glucosylated oligomannosides, in pellicular high pH anion exchange chromatography, we developed a one-step method for the identification of the alternativeN-glycosylation pathway compounds differing from those of the major one.Abbreviations HPAEC high pH anion exchange chromatography - endo H endo betaN-acetylglucosaminidase H - PNGaseF peptideN-glycosidase F - M2 Man2GlcNAc2 - M4 Man4GlcNAc2 - M5 Man5GlcNAc2 - G1M5 Glc1Man5GlcNAc2 - G2M5 Glc2Man5GlcNAc2 - G3M5 Glc3Man5GlcNAc2 - M6 Man6GlcNAc2 - M8 Man8GlcNAc2 - M9 Man9GlcNAc2 - G1M9 Glc1Man9GlcNAc2 - G2M9 Glc2Man9GlcNAc2 - G3M9 Glc3Man9GlcNAc2 To whom correspondence should be addressed.  相似文献   

4.
ER resident glycoproteins, including ectopically expressed recombinant glycoproteins, carry so-called high-mannose type N-glycans, which can be at different stages of processing. The presence of heterogeneous high-mannose type glycans on ER-retained therapeutic proteins is undesirable for specific therapeutic applications. Previously, we described an Arabidopsis alg3-2 glycosylation mutant in which aberrant Man5GlcNAc2 mannose type N-glycans are transferred to proteins. Here we show that the alg3-2 mutation reduces the N-glycan heterogeneity on ER resident glycoproteins in seeds. We compared the properties of a scFv-Fc, with a KDEL ER retention tag (MBP10) that was expressed in seeds of wild type and alg3-2 plants. N-glycans on these antibodies from mutant seeds were predominantly of the intermediate Man5GlcNAc2 compared to Man8GlcNAc2 and Man7GlcNAc2 isoforms on MBP10 from wild-type seeds. The presence of aberrant N-glycans on MBP10 did not seem to affect MBP10 dimerisation nor binding of MBP10 to its antigen. In alg3-2 the fraction of underglycosylated MBP10 protein forms was higher than in wild type. Interestingly, the expression of MBP10 resulted also in underglycosylation of other, endogenous glycoproteins.  相似文献   

5.
Structures of oligosaccharides fromAspergillus niger -d-galactosidase [EC 3.2.1.22] were studied. Purified -d-galactosidase was treated withN-glycosidase F, and six kinds of oligosaccharides were isolated by gel chromatography and anion-exchange chromatography. The structures of the oligosaccharides were determined by1H-NMR and compositional analysis to be Man5GlcNAc2, Man6GlcNAc2, Man9GlcNAc2, GlcMan9GlcNAc2, GalMan4GlcNAc2 and GalMan5GlcNAc2. From mild acid hydrolysis, methylation analysis and ROESY spectral analysis, it was ascertained that the galactosyl residue in two oligosaccharides was in the furanose form and was bound to mannose at the nonreducing end with an 1–2 linkage (GalfMan4GlcNAc2 and GalfMan5GlcNAc2).  相似文献   

6.
Calreticulin is a multifunctional Ca2+-binding protein of the endoplasmic reticulum of most eukaryotic cells. The 56 kDa Calreticulin glycoprotein isolated from spinach (Spinacia oleracea L.) leaves was N-deglycosylated by PNGase-F digestion. The carbohydrate moiety was isolated by gel permeation chromatography and purified by high-pH anion-exchange chromatography. The fractions were investigated by 500 MHz1H-NMR spectroscopy, in combination with monosaccharide analysis and fast-atom bombardment-mass spectrometry. The following carbohydrate structure could be established as the major component (Man8GlcNAc2): Heterogeneity was demonstrated by the presence of two minor components being Man7GlcNAc2 lacking a terminal residue (D1 or D3), compared to the major component. A cross-reactivity with an antibody against the endoplasmic reticulum retention signal HDEL was also found.  相似文献   

7.
In the cytosol of Saccharomyces cerevisiae, most of the free N-glycans (FNGs) are generated from misfolded glycoproteins by the action of the cytoplasmic peptide: N-glycanase (Png1). A cytosol/vacuole α-mannosidase, Ams1, then trims the FNGs to eventually form a trisaccharide composed of Manβ1,4GlcNAc β1,4GlcNAc (Man1GlcNAc2). Whether or not the resulting Man1GlcNAc2 is enzymatically degraded further, however, is currently unknown. The objective of this study was to unveil the fate of Man1GlcNAc2 in S. cerevisiae. Quantitative analyses of the FNGs revealed a steady increase in the amount of Man1GlcNAc2 produced in the post-diauxic and stationary phases, suggesting that this trisaccharide is not catabolized during this period. Inoculation of the stationary phase cells into fresh medium resulted in a reduction in the levels of Man1GlcNAc2. However, this reduction was caused by its dilution due to cell division in the fresh medium. Our results thus indicate that Man1GlcNAc2 is not enzymatically catabolized in S. cerevisiae.  相似文献   

8.
The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays. Véronique Blanchard and Rupali A. Gadkari contributed equally.  相似文献   

9.
The urinary glycoprotein uromodulin (Tamm-Horsfall glycoprotein) exhibits a pregnancy-associated ability to inhibit antigen-specific T cell proliferation, and the activity is associated with a carbohydrate moiety [Muchmore and Decker (1985) Science 229:479–81; Hessionet al., (1987) Science 237:1479–84; Muchmore, Shifrin and Decker (1987) J Immunol 138:2547–53]. We report here that the Man6(7)GlcNAc2-R glycopeptides derived from uromodulin inhibit antigen-specific T cell proliferation by 50% at 0.2–2 M, and further studies, reported elsewhere, confirm that oligomannose glycopeptides from other sources are also inhibitory, with Man9GlcNAc2-R the most inhibitory of those tested [Muchmoreet al., J Leukocyte Biol (in press)]. In this work, we have extended the observation of pregnancy-associated inhibitory activity to a second species, and have compared the oligomannose profile of Tamm-Horsfall glycoprotein (nonpregnant) with that of uromodulin (pregnant) derived from both human and bovine sources. Surprisingly, there was a pregnancy-associated decrease in the total content of oligomannose chains due predominantly to a reduction in Man5GlcNAc2-R and Man6GlcNAc2-R. Man7GlcNAc2-R, which did not decrease with pregnancy, comprised a significantly greater proportion of the total oligomannose chains in pregnant vs. nonpregnant samples from both species (human; 34.6% vs. 25.9%: bovine; 14.4% vs. 7.2%).  相似文献   

10.
A simple method for the preparative resolution of three Man3GlcNAc2 isomers called Ia, Ib and II has been designed. It consists mainly of the use of concanavalin A-Sepharose which allowed the total purification of Man3GlcNAc2-Ia, and then of anion-exchange resin in borate buffer-gradient to separate the Ib and II isomers. The purity of each oligosaccharide was checked by two HPLC methods. The use of these oligosaccharides for different analytical and biosynthetic purposes is discussed, and the unexpected resistance of one of the Man3GlcNAc2 alditols to the action of endo--N-acetylglucosaminidase H is noted.  相似文献   

11.
12.
The effect of vitamin A deficiency onN-linked oligosaccharides of membrane glycoproteins was studied in rat liver in order to evaluate the suggested role of retinol in proteinN-glycosylation. First, oligosaccharides of newly synthesized glycoproteins from rough endoplasmic reticulum of vitamin A deficient liver were compared with that of pair-fed controls. Oligosaccharides were metabolically labelled withd-[2-3H]mannose, released from the glycoproteins with endoglycosidase H, purified by reversed phase HPLC and ion exchange chromatography, and were reduced with sodium borohydride. HPLC fractionation of the oligosaccharide alditols showed that the glycoproteins carried mainly four oligosaccharide species, Glc1Man9GlcNAc2, Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2, in identical relative amounts in the vitamin A deficient and the control tissue. In particular, no increase in the proportion of short chain oligosaccharides was noted in vitamin A deficient liver. Second, the number ofN-linked oligosaccharides was estimated in dipeptidylpeptidase IV (DPP IV), a major glycoprotein constituent of the hepatic plasma membrane, comparing the newly synthesized glycoprotein from rough endoplasmic reticulum and the mature form of DPP IV from the plasma membrane. No evidence was obtained that retinol deficiency caused incomplete glycosylation of this membrane glycoprotein. From these data, the suggested role of retinol as a cofactor involved in the synthesis ofN-linked oligosaccharides of glycoproteins must be questioned.Abbreviations DolP Dolichyl phosphate - DolPP dolichyl pyrophosphoryl - RetPMan retinyl phosphate mannose - DPP IV dipeptidyl peptidase IV (EC 3.4.14.5) - endo H endo--N-acetylglucosaminidase H (EC 3.2.1.96) - endo F endo--N-acetylglucosaminidase F (EC 3.2.1.96) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

13.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

14.
Structures of the Asn linked oligosaccharides of quail egg-yolk immunoglobulin (IgY) were determined in this study. Asn linked oligosaccharides were cleaved from IgY by hydrazinolysis and labelled withp-aminobenzoic acid ethyl ester (ABEE) afterN-acetylation. The ABEE labelled oligosaccharides were then fractionated by a combination of Concanavalin A-agarose column chromatography and anion exchange, normal phase and reversed phase HPLC before their structures were determined by sequential exoglycosidase digestion, methylation analysis, HPLC, and 500 MHz1H-NMR spectroscopy. Quail IgY contained only neutral oligosaccharides of the following categories: the glucosylated oligomannose type (0.6%, Glc1-3Glc1-3Man9GlcNAc2; 35.6%, Glc1-3Man7–9GlcNAc2). oligomannose type (15.0%, with the structure Man5–9GlcNAc2) and biantennary complex type with core structures of-Man1-3(-Man1-6)Man1-4GlcNAc1-4GlcNAc (9.9%),-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4GlcNAc (25.1%) and-Man1-3(GlcNAc1-4)(-Man1-6)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc (11.4%). Although never found in mammalian proteins, glucosylated oligosaccharides (Glc1Man7–9GlcNAc2) have been located previously in hen IgY.Abbreviations IgG, IgM, IgA, IgY immunoglobulin G, M, A and Y, respectively - ABEE p-aminobenzoic acid ethyl ester  相似文献   

15.
MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man6GlcNAc2 accompanied by small amounts of Man5GlcNAc2, Man7GlcNAc2 and Man8GlcNAc2. Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (β1→4-linked to the central mannose) and with varying numbers of α-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.  相似文献   

16.
The structures of N-linked sugar chains (N-glycans) of storage glycoproteins in soybean seeds have been identified. Eight pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the storage glycoproteins by reverse-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were first identified by two-dimensional PA-sugar chain mapping and ion-spray mass analysis, considering the results of sugar composition analysis or sequential exoglycosidase digestion. The deduced structures were further analyzed by ion-spray tandem mass spectrometry and 500 MHz 1H-NMR spectrometry. The eight structures fell into two categories; the major class (96.6%) was a typical high mannose-type, the minor class was a xylose containing-type (Man3Xyl1GlcNAc2, Man3Fuc1Xyl1GlcNAc2; 3.4%).  相似文献   

17.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   

18.
Uromodulin was isolated from urine of three pregnant women. Urine of each donor was collected at subsequent stages of their pregnancy and at one month after gestation. Each batch of uromodulin was enzymatically N-deglycosylated and the released N-glycans were isolated, quantified and profiled by high-pH anion-exchange chromatography. In the course of pregnancy no significant changes were detected in the negative charge distribution stemming from sialic acid and sulfate residues on the complex-type carbohydrate chains of uromodulin. Furthermore, no significant changes in the molar ratio between Man6GlcNAc2 and Man7GlcNAc2 were found in the course of pregnancy, only uromodulin from non-pregnant periods showed small differences.  相似文献   

19.
The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional α-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.  相似文献   

20.
Protein N-glycosylation is initiated by the dolichol cycle in which the oligosaccharide precursor Glc3Man9GlcNAc2-PP-dolichol is assembled in the endoplasmic reticulum (ER). One critical step in the dolichol cycle concerns the availability of Dol-P at the cytosolic face of the ER membrane. In RFT1 cells, the lipid-linked oligosaccharide (LLO) intermediate Man5GlcNAc2-PP-Dol accumulates at the cytosolic face of the ER membrane. Since Dol-P is a rate-limiting intermediate during protein N-glycosylation, continuous accumulation of Man5GlcNAc2-PP-Dol would block the dolichol cycle. Hence, we investigated the molecular mechanisms by which accumulating Man5GlcNAc2-PP-Dol could be catabolized in RFT1 cells. On the basis of metabolic labeling experiments and in comparison to human control cells, we identified phosphorylated oligosaccharides (POS), not found in human control cells and present evidence that they originate from the accumulating LLO intermediates. In addition, POS were also detected in other CDG patients’ cells accumulating specific LLO intermediates at different cellular locations. Moreover, the enzymatic activity that hydrolyses oligosaccharide-PP-Dol into POS was identified in human microsomal membranes and required Mn2+ for optimal activity. In CDG patients’ cells, we thus identified and characterized POS that could result from the catabolism of accumulating LLO intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号