首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to gain insight into the mechanism of the rat muscle adenylosuccinate synthetase reaction, experiments using the technique of positional isotope exchange (isotope scrambling) were undertaken. [gamma-18O]GTP was prepared and incubated with Mg2+ and the synthetase in the presence of various ligands. Positional isotope exchange occurred, as measured by nuclear magnetic resonance spectroscopy, when IMP was present. In the absence of IMP, with or without aspartate or succinate, the [gamma-18O]GTP did not exhibit scrambling. These results suggest that the adenylosuccinate synthetase reaction involves the participation of 6-phosphoryl-IMP as an obligatory intermediate. On the basis of experiments carried out in our laboratory as well as in others, we believe the GDP remains bound to the enzyme until the product, adenylosuccinate, is formed. All products may then dissociate randomly from the enzyme. The positional isotope exchange experiments, along with initial-rate experiments carried out in our laboratory, serve to explain the lack of partial exchange reactions associated with the synthetase (Fromm, H. J. (1958) Biochim. Biophys. Acta 29, 255-262), as well as the net inversion of configuration when chiral thio-GTP is converted to thiophosphate (Webb, M. R., Reed, G. H., Cooper, B. F., and Rudolph, F. B. (1984) J. Biol. Chem. 259, 3044-3046).  相似文献   

2.
The mechanism of the sucrose synthetase reaction has been probed by the technique of positional isotope exchange. [beta-18O2, alpha beta-18O]UDP-Glc has been synthesized starting from oxygen-18-labeled phosphate and the combined activities of carbamate kinase, hexokinase, phosphoglucomutase, and uridine diphosphoglucose pyrophosphorylase. The oxygen-18 at the alpha beta-bridge position of the labeled UDP-Glc has been shown to cause a 0.014 ppm upfield chemical shift in the 31P NMR spectrum of both the alpha- and beta-phosphorus atoms in UDP-Glc relative to the unlabeled compound. The chemical shift induced by each of the beta-nonbridge oxygen-18 atoms was 0.030 ppm. Incubation of [beta-18O2, alpha beta-18O]UDP-Glc with sucrose synthetase in the presence and absence of 2,5-anhydromannitol did not result in any significant exchange of an oxygen-18 from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. It can thus be concluded that either sucrose synthetase does not catalyze the cleavage of the scissile carbon-oxygen bond of UDP-Glc in the absence of fructose or, alternatively, the beta-phosphoryl group of the newly formed UDP is rotationally immobilized.  相似文献   

3.
The reaction mechanism for glycogen synthetase from rabbit muscle was examined by alpha-secondary deuterium isotope effects and positional exchange experiments. Incubation of glycogen synthetase with [beta-18O2,alpha beta-18O]UDP-Glc did not result in any detectable positional isotope exchange from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. Glucono-1,5-lactone was found to be a noncompetitive inhibitor versus UDP-Glc. The kinetic constants, K(is) and K(ii), were found to be 91 +/- 4 microM and 0.70 +/- 0.09 mM, respectively. Deoxynojirimycin was a nonlinear inhibitor at pH 7.5. The alpha-secondary deuterium isotope effects were measured with [1-2H]UDP-Glc by the direct comparison method. The isotope effects on Vmax and Vmax/K were found to be 1.23 +/- 0.04 and 1.09 +/- 0.06, respectively. The inhibitory effects by glucono-lactone and deoxynojirimycon plus the large alpha-secondary isotope effect on Vmax have been interpreted to show that an oxocarbonium ion is an intermediate in this reaction mechanism. The lack of a detectable positional isotope exchange reaction in the absence of glycogen suggests the formation of a rigid tight ion pair between UDP and the oxocarbonium ion intermediate.  相似文献   

4.
The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of [beta-18O2, alpha beta-18O]UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for [1-2H]-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.  相似文献   

5.
Isoleucyl-tRNA synthetase from Escherichia coli catalyzes the activation of [18O2]isoleucine by adenosine 5'-[(R)-alpha-17O]triphosphate with inversion of configuration at phosphorus. Moreover, isoleucyl-tRNA synthetase does not catalyze positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of isoleucine or in the presence of the competitive inhibitor isoleucinol, which effectively eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. Together, these observations require that isoleucyl-tRNA synthetase catalyzes the activation of isoleucine by associative "in line" nucleotidyl transfer. The synthesis of adenosine 5'-[(R)-alpha-17O]diphosphate and its conversion to adenosine 5'-[(R)-alpha-17O]triphosphate is described and an explanation provided for the reported differences between the treatment of adenosine 5'-[(S)-alpha-thiodiphosphate] with cyanogen bromide and bromine in [18O]water.  相似文献   

6.
Pantothenate synthetase from Mycobacterium tuberculosis catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine. The formation of a kinetically competent pantoyl-adenylate intermediate was established by the observation of a positional isotope exchange (PIX) reaction within (18)O-labeled ATP in the presence of d-pantoate. When [betagamma-(18)O(6)]-ATP was incubated with pantothenate synthetase in the presence of d-pantoate, an (18)O label gradually appeared in the alphabeta-bridge position from both the beta- and the gamma-nonbridge positions. The rates of these two PIX reactions were followed by (31)P NMR spectroscopy and found to be identical. These results are consistent with the formation of enzyme-bound pantoyl-adenylate and pyrophosphate upon the mixing of ATP, D-pantoate, and enzyme. In addition, these results require the complete torsional scrambling of the two phosphoryl groups of the labeled pyrophosphate product. The rate of the PIX reaction increased as the D-pantoate concentration was elevated and then decreased to zero at saturating levels of D-pantoate. These inhibition results support the ordered binding of ATP and D-pantoate to the enzyme active site. The PIX reaction was abolished with the addition of pyrophosphatase; thus, PP(i) must be free to dissociate from the active site upon formation of the pantoyl-adenylate intermediate. The PIX reaction rate diminished when the concentrations of ATP and D-pantoate were held constant and the concentration of the third substrate, beta-alanine, was increased. This observation is consistent with a kinetic mechanism that requires the binding of beta-alanine after the release of pyrophosphate from the active site of pantothenate synthetase. Positional isotope exchange reactions have therefore demonstrated that pantothenate synthetase catalyzes the formation of a pantoyl-adenylate intermediate upon the ordered addition of ATP and pantoate.  相似文献   

7.
The peptidolytic reaction of HIV-1 protease has been investigated by using four oligopeptide substrates, Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, Ac-Ser-Gln-Ser-Tyr-Pro-Val-Val-NH2, and Ac-Arg-Lys-Ile-Leu-Phe-Leu-Asp-Gly-NH2, that resemble two cleavage sites found within the naturally occurring polyprotein substrates Pr55gag and Pr160gag-pol. The values for the kinetic parameters V/KEt and V/Et were 0.16-7.5 mM-1 s-1 and 0.24-29 s-1, respectively, at pH 6.0, 0.2 M NaCl, and 37 degrees C. By use of a variety of inorganic salts, it was concluded that the peptidolytic reaction is nonspecifically activated by increasing ionic strength. V/K increased in an apparently parabolic fashion with increasing ionic strength, while V was either increased or decreased slightly. From product inhibition studies, the kinetic mechanism of the protease is either random or ordered uni-bi, depending on the substrate studied. The reverse reaction or a partial reverse reaction (as measured by isotope exchange of the carboxylic product into substrate) was negligible for most of the oligopeptide substrates, but the enzyme catalyzed the formation of Ac-Ser-Gln-Asn-Tyr-Phe-Leu-Asp-Gly-NH2 from the products Ac-Ser-Gln-Asn-Tyr and Phe-Leu-Asp-Gly-NH2. The protease-catalyzed exchange of an atom of 18O from H2 18O into the re-formed substrates occurred at a rate which was 0.01-0.12 times that of the forward peptidolytic reaction. The results of these studies are in accord with the formation of a kinetically competent enzyme-bound amide hydrate intermediate, the collapse of which is the rate-limiting chemical step in the reaction pathway.  相似文献   

8.
9.
The kinetic mechanism of Escherichia coli guanosine-5'-monophosphate synthetase has been determined by utilizing initial velocity kinetic patterns and positional isotope exchange experiments. The initial velocity patterns of MgATP, XMP, and either NH3 or glutamine (as nitrogen source) were consistent with the ordered addition of MgATP followed by XMP and then NH3. The enzyme catalyzes the exchange of 18O from the beta-nonbridge positions of [beta,beta,beta gamma,gamma,gamma,gamma-18O6]ATP into the alpha beta-bridge position only in the presence of XMP and Mg2+. The exchange reaction did not require NH3. The isotope exchange reaction increased as the XMP concentration increased and then decreased at saturating levels of XMP. These results also support the ordered addition of MgATP followed by XMP. GMP synthetase catalyzes the hydrolysis of ATP to AMP and PPi along with an ATP/PPi exchange reaction in the absence of NH3. These data taken together support a mechanism in which the initial step in the enzymatic reaction involves formation of an adenyl-XMP intermediate. Psicofuranine, an irreversible inhibitor of the enzyme, acts by preventing the release or further reaction of adenyl-XMP with H2O or NH3 but does not suppress the isotope exchange or ATP/PPi exchange reactions. GMP synthetase has also been shown to require a free divalent cation for full activity. When Ca2+ replaces Mg2+ in the reaction, the positional isotope exchange reaction is enhanced but the reaction with NH3 to form GMP is greatly suppressed.  相似文献   

10.
The biosynthesis of S-adenosylmethionine occurs in a unique enzymatic reaction in which the synthesis of the sulfonium center results from displacement of the entire polyphosphate chain from MgATP. The mechanism of S-adenosylmethionine synthetase (ATP:L-methionine s-adenosyltransferase) from Escherichia coli has been characterized by kinetic isotope effect and substrate trapping measurements. Replacement of 12C by 14C at the 5' carbon of ATP yields a primary Vmax/Km isotope effect (12C/14C) of 1.128 +/- 0.003 in the absence of added monovalent cation activator (K+). At saturating K+ concentrations (10 mM) the primary isotope effect diminishes slightly to 1.108 +/- 0.003, indicating that the step in the mechanism involving bond breaking at the 5' carbon of MgATP has a small commitment to catalysis at conditions near Vmax. No alpha-secondary 3H isotope effect from [5'-3H]ATP was detected, (1H/3H) = 1.000 +/- 0.002, even in the absence of KCl. There was no significant primary sulfur isotope effect from [35S]methionine at KCl concentrations from 0 to 10 mM. Substitution of the methyl group of methionine with tritium yielded a beta-secondary isotope effect (CH3/C3H3) = 1.009 +/- 0.008 independent of KCl concentration. The reaction of selenomethionine and [5'-14C]ATP gave a primary isotope effect of 1.097 +/- 0.006, independent of KCl concentration. Substrate trapping experiments demonstrated that the step in the mechanism involving bond making to sulfur of methionine does not have a significant commitment to catalysis at 0.25 mM KCl, therefore intrinsic isotope effects were observed. Substrate trapping experiments indicated that the step involving bond breaking at carbon 5' of MgATP has a 10% commitment to catalysis at 0.25 mM KCl. The isotope effects are interpreted in terms of an Sn2-like transition state structure in which bonding of the C5' is symmetric with respect to the departing tripolyphosphate group and the incoming sulfur of methionine. With selenomethionine as substrate an earlier transition state is implicated.  相似文献   

11.
M P Dale  D D Hackney 《Biochemistry》1987,26(25):8365-8372
A method for analysis of positional isotope exchange (PIX) during ATP in equilibrium with HOH oxygen exchange is presented that uses a two-step degradation of ATP resulting in cleavage of the beta P-O gamma P bond. This cleavage yields Pi derived from the gamma-phosphoryl of ATP that contains all four of the gamma oxygens. Both PIX between the beta,gamma-bridge and beta-nonbridge positions and washout of the gamma-nonbridge oxygens can be simultaneously followed by using ATP labeled with 17O at the beta-nonbridge positions and 18O at the beta,gamma-bridge and gamma-nonbridge positions. Application of this method to ATP in equilibrium with HOH exchange during single turnovers of myosin indicates that the bulk of the ATP undergoes rapid washout of gamma-nonbridge oxygens in the virtual absence of PIX. At 25 degrees C with subfragment 1 the scrambling rate is at the limit of detectability of approximately 0.001 s-1, which is 50-fold slower than the steady-state rate. This corresponds to a probability of scrambling for the beta-oxygens of bound ADP of 1 in 10,000 for each cycle of reversible hydrolysis of bound ATP. A fraction of the ATP, however, does not undergo rapid washout. With myosin and stoichiometric ATP at 0 degrees C, this fraction corresponds to 10% of the ATP remaining at 36 s, or 2% of the initial ATP, and an equivalent level of ATP is found that does not bind irreversibly to myosin in a cold chase experiment. A significant level of apparent PIX is observed with subfragment 1 in the fraction that resists washout, and this apparent PIX is shown to be due to contaminant adenylate kinase activity. This apparent PIX due to adenylate kinase provides a possible explanation for the PIX observed by Geeves et al. [Geeves, M. A., Webb, M. R., Midelfort, C. F., & Trentham, D. R. (1980) Biochemistry 19, 4748-4754] with subfragment 1.  相似文献   

12.
Fast atom bombardment mass spectrometry (FAB-MS) has been used to measure positional isotope exchange rates in enzyme-catalyzed reactions. The technique has been applied to the reactions catalyzed by acetyl-CoA synthetase and argininosuccinate synthetase. The FAB technique is also able to quantitatively determine the oxygen-18 or oxygen-17 content of nucleotides on as little as 10 nmol of material with no prior derivatization. Acetyl-CoA synthetase has been shown by FAB-MS to catalyze the positional exchange of an oxygen-18 of ATP from the beta-nonbridge position to the alpha beta-bridge position in the presence of acetate. These results are consistent with acetyl adenylate as a reactive intermediate in this reaction. Argininosuccinate synthetase was shown not to catalyze a positional isotope exchange reaction designed to test for the formation of citrulline adenylate as a reactive intermediate. Argininosuccinate synthetase was also found not to catalyze the transfer of oxygen-18 from [ureido-18O]citrulline to the alpha-phosphorus of ATP in the absence of added aspartate. This experiment was designed to test for the transient formation of carbodiimide as a reactive intermediate. These results suggest that either argininosuccinate synthetase does not catalyze the formation of citrulline adenylate or the enzyme is able to completely suppress the rotation of the phosphoryl groups of PPi.  相似文献   

13.
I A Rose 《Federation proceedings》1978,37(14):2775-2782
Reversible gamma-PO3 transfer in ATP reactions can be recognized by exchange of 18O from the beta,gamma-bridge position to the beta-P-nonbridge positions: (see article). Such intramolecular exchange is less demanding for the detection of the bond cleavage than the usual ATP:ADP isotope exchange because it does not require dissociation of bound ADP from the intermediate complex. Acyl phosphate intermediates are indicated for the glutamine synthetase and carbamyl-P synthetase reactions by their extreme requirements for glutamate and bicarbonate, respectively, for positional oxygen exchange. No support is given for E-P or concerted mechanisms. No support is found for an active CO2 in the latter reaction, although this is not ruled out by the data. Positional isomerization in ATP occurs with lamellae from spinach chloroplast only in the light. When the ATP molecule interacts, it also undergoes complete exchange of the gamma-PO3 oxygen with water before it rejoins the pool of free ATP. The difference in rates of the two exchanges suggests that the torsional motion of ADP-beta-PO3 is greatly hindered on the enzyme. This may explain, by the argument of substrate activation, the rapid reversibility of the ATPase reaction on the enzyme.  相似文献   

14.
A new positional isotope exchange method has been developed that can be used for the analysis of enzyme-catalyzed reactions which have ping-pong kinetic mechanisms. The technique can be used to measure the relative rates of ligand dissociation from enzyme-product complexes. Enzyme is incubated with the labeled substrate and an excess of the corresponding unlabeled product. The partitioning of the enzyme-product complex back toward free enzyme is determined from the rate of positional isotope exchange within the original labeled substrate. The partitioning of the enzyme-product complex forward toward free enzyme is determined from the rate of formation of totally unlabeled substrate. It has been shown that the ratio of the two rates provides a lower limit for the release of product from the enzyme-product complex. The technique has been applied to the reaction catalyzed by galactose-1-phosphate uridyltransferase. The lower limit for the release of glucose 1-phosphate from the uridyl-enzyme relative to the maximal velocity of the reverse reaction was determined to be 3.4 +/- 0.5.  相似文献   

15.
Cyclopropanation of unsaturated lipids is an intriguing enzymatic reaction and a potential therapeutic target in Mycobacterium tuberculosis. Cyclopropane fatty acid synthase from Escherichia coli is the only in vitro model available to date for mechanistic and inhibition studies. While the overall reaction mechanism of this enzymatic process is now well accepted, some mechanistic issues are still debated. Using homogeneous E. coli enzyme we have shown that, contrary to previous report based on in vivo experiments, there is no exchange of the cylopropane methylene protons with the solvent during catalysis, as probed by ultra high resolution mass spectrometry. Using [methyl-14C]-labeled and [methyl-3H3]-S-adenosyl-l-methionine we have measured a significant intermolecular primary tritium kinetic isotope effect (TV/Kapp = 1.8 ± 0.1) consistent with a partially rate determining deprotonation step. We conclude that both chemical steps of this enzymatic cyclopropanation, the methyl addition onto the double bond and the deprotonation step, are rate determining, a common situation in efficient enzymes.  相似文献   

16.
17.
18.
CTP synthetase from Escherichia coli catalyzes exchange of 18O from the beta gamma-bridge position of [gamma-18O4] ATP into the beta-nonbridge position. This positional isotope exchange occurs in the presence of UTP and MgCl2 but in the absence of NH3. The enzyme also has an ATPase activity in the presence of UTP that occurs under conditions that are identical to those used in the positional isotope exchange experiments. These data provide evidence for the stepwise nature of the reactions catalyzed by CTP synthetase with the initial step involving phosphorylation of UTP by ATP. The relative rate of the isotope exchange reaction is approximately 3 times faster than the ATPase reaction, but the isotope exchange rate is approximately 3% of the overall rate in the presence of NH3. These results are consistent with the ATPase reaction involving attack of water on the phosphorylated intermediate (4-phospho-UTP). The positional isotope exchange reaction is independent of the UTP concentration above saturating levels of UTP demonstrating that the order of addition of substrates is UTP followed by ATP and then NH3.  相似文献   

19.
The kinetic mechanism of the sheep brain glutamine synthetase has been examined by both initial rate kinetics using the glutamate analog beta-glutamate and by isotope exchange measurements at equilibrium. Results of the initial rate studies were compatible with a number of sequential mechanisms but not with a partially or fully ordered rapid equilibrium or a ping-pong mechanism. Kinetic parameters at 37 degrees and pH 7.2 were K beta-Glu = 16 mM, KATP = 0.28 mM, and KNH2OH = 1.4 mM. For all equilibrium exchanges studied (ATP in equilibrium ADP, ATP in equilibrium Pi, and Glu in equilibrium Gln), the rate of exchange rose smoothly to a maximum as all substrates and products were simultaneously raised in a constant ratio. This result is in accord with a random order of substrate addition. A brief treatment of equilibrium exchange rates in cases where all substrate/product pairs are varied together is also presented.  相似文献   

20.
Isotope exchange measurements of sheep brain glutamine synthetase have yielded conflicting experimental findings and interpretation, leaving in doubt the question of whether the enzyme operates via ordered or random pathways of enzyme-substrate interactions. We now report new experimental evidence that demonstrates the earlier discrepant results may be attributed to the choice of reaction conditions used to achieve equilibration of the chemical reaction prior to addition of isotopic tracer. A random kinetic mechanism, perhaps not of the rapid-equilibrium type, is most compatible with the exchange data. We also discuss other potential time-dependent processes that may compromise the equilibration of reaction systems and affect the outcome of exchange experiments, and criteria for equilibration are suggested for the aid of other workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号