首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dragonfly, (Aeshna, Anax) which feeds on small flying insects, requires a visual system capable of signaling the movements of airborne prey. A group of 8 descending feature detectors in the dragonfly are tuned exclusively to moving contrasting objects. These target-selective descending neurons project from the brain to the thoracic ganglia. Their activity drives steering movement of the wings.In this study, we recorded target-selective descending neuron activity intracellularly.To define their receptive fields, we recorded responses to the movement of black square targets projected onto a screen in front of the animal. Each neuron was identified by dye injection.Target-selective descending neurons exhibit several receptive field properties. Our results show that they are strongly directionally selective. Two TSDNs, exclusively tuned to small targets, have receptive fields restricted to visual midline. Others, which are not selective for target size, have asymmetric receptive fields centered laterally.We suggest that the behavioral function of these specialized feature detectors is to steer the dragonfly during prey-tracking so as to fix the position of the prey image on the retina. If the dragonfly maintains a constant visual bearing to its prey over time it will intercept its prey.Abbreviations TSDN target-selective descending neuron - DCMD descending contralateral movement detector - MDT median dorsal tract - DIT dorsal intermediate tract - VNC ventral nerve cord  相似文献   

2.
Many animals visualize and track small moving targets at long distances-be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below the resolution limit of the eye. Many STMDs also respond robustly to small targets against complex stationary or moving backgrounds. We hypothesized that this requires a complex mechanism to avoid breakthrough responses by background features, and yet to adequately amplify the weak signal of tiny targets. We compared responses of dragonfly STMD neurons to small targets that begin moving within the receptive field with responses to targets that approach the same location along longer trajectories. We find that responses along longer trajectories are strongly facilitated by a mechanism that builds up slowly over several hundred milliseconds. This allows the neurons to give sustained responses to continuous target motion, thus providing a possible explanation for their extraordinary sensitivity.  相似文献   

3.
Summary Descending deviation detector neurons (DDNs) of Locusta migratoria are characterized physiologically by their responses to light on/off stimuli, simulated course deviation (rotation of an artificial horizon), passive rotation of the head, frontal wind, and flight activity. The investigation emphasises on the co-processing of exteroceptive input signalling course deviation (mainly movement of the retinal image, but also wind), and proprioceptive input signalling head movement and position. Stimuli were presented in combinations as expected during natural behavior. Eight DDNs are described for the first time, and 3 previously described DDNs are characterized further. Responses to horizon rotation and imposed head movements are assigned to one of 4 response types: (1) the horizon-only type codes retinal slip and/or the position of the horizon in the visual field but ignores cervical proprioception; (2) the head-only type ignores visually simulated course deviation but codes for movement or position of the head; (3) in the compensating type, head rolling causes visual input and cervical proprioceptive input of opposite signs, so that head movements themselves are ignored, whereas course deviations are recognized; (4) in the amplifying type, head rolling causes visual input and cervical proprioceptive input of the same sign, i.e. one input amplifies the other. This classification does not take the various responses to wind into account. In several DDNs, responses to phasic and tonic stimuli of the same modality, and/or responses to deviations about different axes could be assigned to different response types. Activity in DDNs has been shown previously to result in steering responses of wings, legs, abdomen and/or the head. It is proposed that different kinds of flight steering (e.g. corrective course control, intentional steering, orientation towards or away from a target) may be controlled by selective enhancement or suppression of responses or motor effects of DDN-subpopulations.Abbreviations AP action potential - DDN descending deviation detector neuron - DNI, DNC, DNM descending deviation detector neurons receiving major input from the ipsilateral, contralateral, and median ocellus respectively - PDDSMD protocerebral, descending direction-selective motion-detecting neuron - PI(2)5 descending deviation detector neuron with the cell body in the pars intercerebralis medialis - TCG tritocerebral commissure giant neuron  相似文献   

4.
Evasive steering is crucial for flying in a crowded environment such as a locust swarm. We investigated how flying locusts alter wing-flapping symmetry in response to a looming object approaching from the side. Desert locusts (Schistocerca gregaria) were tethered to a rotatable shaft that allowed them to initiate a banked turn. A visual stimulus of an expending disk on one side of the locust was used to evoke steering while recording the change in wingbeat kinematics and electromyography (EMG) of metathoracic wing depressors. Locusts responded to the looming object by rolling to the contralateral direction. During turning, EMG of hindwing depressors showed an omission of one action potential in the subalar depressor (M129) of the hindwing inside the turn. This omission was associated with increased pronation of the same wing, reducing its angle-of-attack during the downstroke. The link between spike-omission in M129 and wing pronation was verified by stimulating the hindwing depressor muscles with an artificial motor pattern that included the misfire of M129. These results suggest that hindwing pronation is instrumental in rotating the body to the side opposite of the approaching threat. Turning away from the threat would be highly adaptive for collision avoidance when flying in dense swarms.  相似文献   

5.
Locusts demonstrate remarkable phenotypic plasticity driven by changes in population density. This density dependent phase polyphenism is associated with many physiological, behavioral, and morphological changes, including observations that cryptic solitarious (solitary-reared) individuals start to fly at dusk, whereas gregarious (crowd-reared) individuals are day-active. We have recorded for 24-36 h, from an identified visual output neuron, the descending contralateral movement detector (DCMD) of Schistocerca gregaria in solitarious and gregarious animals. DCMD signals impending collision and participates in flight avoidance maneuvers. The strength of DCMD's response to looming stimuli, characterized by the number of evoked spikes and peak firing rate, varies approximately sinusoidally with a period close to 24 h under constant light in solitarious locusts. In gregarious individuals the 24-h pattern is more complex, being modified by secondary ultradian rhythms. DCMD's strongest responses occur around expected dusk in solitarious locusts but up to 6 h earlier in gregarious locusts, matching the times of day at which locusts of each type are most active. We thus demonstrate a neuronal correlate of a temporal shift in behavior that is observed in gregarious locusts. Our ability to alter the nature of a circadian rhythm by manipulating the rearing density of locusts under identical light-dark cycles may provide important tools to investigate further the mechanisms underlying diurnal rhythmicity.  相似文献   

6.
Neurons in the locust visual system encode approaches of looming stimuli and are implicated in production of escape behaviours. The lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD) compute characteristics of expanding edges across the locust eye during a loom and DCMD synapses onto motor elements associated with behaviour. We identified another descending interneuron within the locust ventral nerve cord. We named this neuron the late DCMD (LDCMD) as it responds later during an approach, with the firing rate peaking at about the time of collision. LDCMD produced lower amplitude, broader action potentials that were associated with an afterhyperpolarization, whereas DCMD action potentials showed a brief afterhyperpolarization often followed by an afterdepolarization. Within the mesothoracic ganglion, the primary LDCMD axon located adjacent to the DCMD axon, was thinner and lacked collateral projections to the lateral region of the neuropil. When compared with DCMD, LDCMD fired with fewer spikes during a loom and showed weaker habituation to repeated approaches. Coincidence of LDCMD and DCMD firing increased during object approach. Our findings indicate the presence of an additional motion-sensitive descending neuron in the locust that encodes temporally distinct properties of an approaching object.  相似文献   

7.
The flight control systems of flying insects enable many kinds of sophisticated maneuvers, including avoidance of midair collisions. Visuomotor response to an approaching object, received as image expansion on insects’ retina, is a complex event in a dynamic environment where both animals and objects are moving. There are intensive free flight studies on the landing response in which insects receive image expansion by their own movement. However, few studies have been conducted regarding how freely flying insects respond to approaching objects. Here, using common laboratory insects for behavioral research, the bumblebee Bombus ignitus, we examined their visual response to an approaching object in the free-flying condition. While the insect was slowly flying in a free-flight arena, an expanding stripe was projected laterally from one side of the arena with a high-speed digital mirror device projector. Rather than turning away reported before, the bumble bees performed complex flight maneuvers. We synchronized flight trajectories, orientations and wing stroke frequencies with projection parameters of temporal resolution in 0.5 ms, and analyzed the instantaneous relationship between visual input and behavioral output. In their complex behavioral responses, we identified the following two visuomotor behaviors: increasing stroke frequency when the bumble bees confront the stripe expansion, and turning towards (not away) the stripe expansion when it is located laterally to the bee. Our results suggested that the response to object expansion is not a simple and reflexive escape but includes object fixation, presumably for subsequent behavioral choice.  相似文献   

8.
Cognitive and neuroscientific evidence has challenged the widespread view that perception, cognition and action constitute independent, discrete stages. For example, in continuous response trajectories toward a target response location, evidence suggests that a decision on which target to reach for (i.e., the cognition stage) is not reached before the movement starts (i.e., the action stage). As a result, instead of a straight trajectory to the correct target response, movement trajectories may curve toward competing responses or away from inhibited responses. In the present study, we examined response trajectories during a number comparison task. Participants had to decide whether a target number was smaller or larger than 5. They had to respond by moving to a left or a right response location. Replicating previous results, response trajectories were more curved toward the incorrect response location when distance to 5 was small (e.g., target number 4) than when distance to 5 was large (e.g., target number 1). Importantly, we manipulated the response mapping, which allowed us to demonstrate that this response trajectory effect results from the relative amount of evidence for the available responses across time. In this way, the present study stresses the tight coupling of number representations (i.e., cognition) and response related processes (i.e., action) and shows that these stages are not separable in time.  相似文献   

9.
The introduction of non-target objects into a workspace leads to temporal and spatial adjustments of reaching trajectories towards a target. If the non-target is obstructing the path of the hand towards the target, the reach is adjusted such that collision with the non-target, or obstacle, is avoided. Little is known about the influence of features which are irrelevant for the execution of the movement on avoidance movements, like color similarity between target and non-target objects. In eye movement studies the similarity of non-targets has been revealed to influence oculomotor competition. Because of the tight neural and behavioral coupling between the gaze and reaching system, our aim was to determine the contribution of similarity between target and non-target to avoidance movements. We performed 2 experiments in which participants had to reach to grasp a target object while a non-target was present in the workspace. These non-targets could be either similar or dissimilar in color to the target. The results indicate that the non-spatial feature similarity can further modify the avoidance response and therefore further modify the spatial path of the reach. Indeed, we find that dissimilar pairs have a stronger effect on reaching-to-grasp movements than similar pairs. This effect was most pronounced when the non-target was on the outside of the reaching hand, where it served as more of an obstacle to the trailing arm. We propose that the increased capture of attention by the dissimilar obstacle is responsible for the more robust avoidance response.  相似文献   

10.
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects.  相似文献   

11.
Locusts respond to the images of approaching (looming) objects with responses that include gliding while in flight and jumping while standing. For both of these responses there is good evidence that the DCMD neuron (descending contralateral movement detector), which carries spike trains from the brain to the thoracic ganglia, is involved. Sudden glides during flight, which cause a rapid loss of height, are last-chance manoeuvres without prior preparation. Jumps from standing require preparation over several tens of milliseconds because of the need to store muscle-derived energy in a catapult-like mechanism. Locusts’ DCMD neurons respond selectively to looming stimuli, and make connections with some motor neurons and interneurons known to be involved in flying and jumping. For glides, a burst of high-frequency DCMD spikes is a key trigger. For jumping, a similar burst can influence timing, but neither the DCMD nor any other single interneuron has been shown to be essential for triggering any stage in preparation or take-off. Responses by the DCMD to looming stimuli can alter in different behavioural contexts: in a flying locust, arousal ensures a high level of both DCMD responsiveness and glide occurrence; and there are significant differences in DCMD activity between locusts in the gregarious and the solitarious phase.  相似文献   

12.
Visual acuity measurements using the descending contralateral movement detector (DCMD) neuron in the lubber grasshopper, Romalea microptera, show responses to spatial angles as small as 0.3°. Moving, black-white striped objects were viewed on a rear-projection screen.Nonuniformity and spatial sub-harmonic measurements of the object patterns showed that any artifacts which were present were below the resolution limits of the human visual system (and presumably that of Romalea).Nonstationarity in the responses of the DCMD system can be categorized as long-term (sensitivity changes) and short term (habituation). A mathematical model for habituation is used to illustrate how confidence in responses may be lost due to the incorporation of too many samples of habituated data.  相似文献   

13.
We investigated the escape jumps that locusts produce in response to approaching objects. Hindleg muscular activity during an escape jump is similar to that during a defensive kick. Locusts can direct their escape jumps up to 50° either side of the direction of their long axis at the time of hindleg flexion, allowing them to consistently jump away from the side towards which an object is approaching. Variation in jump trajectory is achieved by rolling and yawing movements of the body that are controlled by the fore- and mesothoracic legs. During hindleg flexion, a locust flexes the foreleg ipsilateral to its eventual jump trajectory and then extends the contralateral foreleg. These foreleg movements continue throughout co-contraction of the hindleg tibial muscles, pivoting the locust’s long axis towards its eventual jump trajectory. However, there are no bilateral differences in the motor programs of the left and right hindlegs that correlate with jump trajectory. Foreleg movements enable a locust to control its jump trajectory independent of the hindleg motor program, allowing a decision on jump trajectory to be made after the hindlegs have been cocked in preparation for a jump.  相似文献   

14.
The DNI, DNM and DNC descending interneurons all have very similar properties and are each at the convergence of visual, ocellar, wind-hair and other mechanoreceptor inputs. The 3 neurons respond almost exclusively to movement of the animal in space about its three axes of rotation. All are spatially and directionally selective. Movements in the preferred sense produce increasingly strong responses with amplitude and absolute position, while movements in the antipreferred sense usually elicit no response at all. Movements in the preferred sense, but towards, rather than away from, the normal flying position start to produce responses only as the animal approaches the normal flight position. The neurons function as feature detectors, responding only to specific sorts of deviation from course. DNI, DNM and DNC differ from one another principally in their directionality. DNI responds optimally to a diving banked turn to the ipsilateral side, DNM to downwards pitch, and the DNC to a diving banked turn to the contralateral side. The DN neurons contribute to the production of steering manoeuvres. They appear to be representatives of a larger class of descending interneurons bringing exteroceptive sensory input to the thoracic locomotory neuropil. The occurrence of this class of units in locusts and other insects is discussed.  相似文献   

15.
Tsetse flies Glossina spp. (Diptera; Glossinidae) are blood‐feeding vectors of disease that are attracted to vertebrate hosts by odours and visual cues. Studies on how tsetse flies approach visual devices are of fundamental interest because they can help in the development of more efficient control tools. The responses of a forest tsetse fly species Glossina brevipalpis (Newstead) to human breath are tested in a wind tunnel in the presence or absence of a blue sphere as a visual target. The flight responses are video recorded with two motion‐sensitive cameras and characterized in three dimensions. Although flies make meandering upwind flights predominantly in the horizontal plane in the plume of breath alone, upwind flights are highly directed at the visual target presented in the plume of breath. Flies responding to the visual target fly from take‐off within stricter flight limits at lower ground speeds and with a significantly lower variance in flight trajectories in the horizontal plane. Once at the target, flies fly in loops principally in the horizontal plane within 40 cm of the blue sphere before descending in spirals beneath it. Successful field traps designed for G. brevipalpis take into account the strong horizontal component in local search behaviour by this species at objects. The results suggest that trapping devices should also take into account the propensity of G. brevipalpis to descend to the lower parts of visual targets.  相似文献   

16.
Avoiding or intercepting looming objects implies a precise estimate of both time until contact and impact location. In natural situations, extrapolating a movement trajectory relative to some egocentric landmark requires taking into account variations in retinal input associated with moment-to-moment changes in body posture. Here, human observers predicted the impact location on their face of an approaching stimulus mounted on a robotic arm, while we systematically manipulated the relation between eye, head, and trunk orientation. The projected impact point on the observer's face was estimated most accurately when the target originated from a location aligned with both the head and eye axes. Eccentric targets with respect to either axis resulted in a systematic perceptual bias ipsilateral to the trajectory's origin. We conclude that (1) predicting the impact point of a looming target requires combining retinal information with eye position information, (2) that this computation is accomplished accurately for some, but not all, possible combinations of these cues, (3) that the representation of looming trajectories is not formed in a single, canonical reference frame, and (4) that the observed perceptual biases could reflect an automatic adaptation for interceptive/defensive actions within near peripersonal space.  相似文献   

17.
How higher-order sensory neurons generate complex selectivity from their simpler inputs is a fundamental question in neuroscience. The lobula giant movement detector (LGMD) is such a visual neuron in the locust Schistocerca americana that responds selectively to objects approaching on a collision course or their two-dimensional projections, looming stimuli [1-4]. To study how this selectivity arises, we designed an apparatus allowing us to stimulate, individually and independently, a sizable fraction of the ~15,000 elementary visual inputs impinging retinotopically onto the LGMD's dendritic fan [5-7] (Figure?1Ai). We then recorded intracellularly in?vivo throughout the visual pathway, assessing the LGMD's activity and that of all three successive presynaptic stages conveying local excitatory inputs. Our results suggest that as collision becomes increasingly imminent, the strength of these inputs increases, whereas their latency decreases. This latency decrease favors summation of inputs activated sequentially throughout the looming sequence, making the neuron maximally sensitive to collision-bound trajectories. Thus, the LGMD's selectivity arises partially from presynaptic mechanisms that synchronize a large population of inputs during a looming stimulus and subsequent detection by postsynaptic mechanisms within the neuron itself. Analogous mechanisms are likely to underlie the tuning properties of visual neurons in other species as well.  相似文献   

18.
 There is a no unique relationship between the trajectory of the hand, represented in cartesian or extrinsic space, and its trajectory in joint angle or intrinsic space in the general condition of joint redundancy. The goal of this work is to analyze the relation between planning the trajectory of a multijoint movement in these two coordinate systems. We show that the cartesian trajectory can be planned based on the task parameters (target coordinates, etc.) prior to and independently of angular trajectories. Angular time profiles are calculated from the cartesian trajectory to serve as a basis for muscle control commands. A unified differential equation that allows planning trajectories in cartesian and angular spaces simultaneously is proposed. Due to joint redundancy, each cartesian trajectory corresponds to a family of angular trajectories which can account for the substantial variability of the latter. A set of strategies for multijoint motor control following from this model is considered; one of them coincides with the frog wiping reflex model and resolves the kinematic inverse problem without inversion. The model trajectories exhibit certain properties observed in human multijoint reaching movements such as movement equifinality, straight end-point paths, bell-shaped tangential velocity profiles, speed-sensitive and speed-insensitive movement strategies, peculiarities of the response to double-step targets, and variations of angular trajectory without variations of the limb end-point trajectory in cartesian space. In humans, those properties are almost independent of limb configuration, target location, movement duration, and load. In the model, these properties are invariant to an affine transform of cartesian space. This implies that these properties are not a special goal of the motor control system but emerge from movement kinematics that reflect limb geometry, dynamics, and elementary principles of motor control used in planning. All the results are given analytically and, in order to compare the model with experimental results, by computer simulations. Received: 6 April 1994/Accepted in revised form: 25 April 1995  相似文献   

19.
Summary A method is described for recording with microelectrodes from central neurones in locusts,Schistocerca gregaria americana, that are free to perform a large fraction of their behavioural repertoire. This tethered preparation has been used to examine the individual responses of large neurones in the neck connectives to a range of sensory stimuli.From differences in the responses of the units examined and from their positions in the connective, as determined by dye iontophoresis, 31 separate neurones have been identified. The axons of these cells had relatively constant diameters and cord positions in different animals and appeared in both right and left connectives but with their positions mirror reversed. The majority of these 31 cells carried descending information from the head ganglia and under our experimental conditions, 7 were found to have wind stimulation as their strongest sensory input, 17 had visual stimulation, 4 had sound stimulation and 3 had proprioceptive input.Abbreviations DCMD descending contralateral movement detector (neurone) - DIMD descending ipsilateral movement detector (neurone)  相似文献   

20.
An observer traversing an environment actively relocates gaze to fixate objects. Evidence suggests that gaze is frequently directed toward the center of an object considered as target but more likely toward the edges of an object that appears as an obstacle. We suggest that this difference in gaze might be motivated by specific patterns of optic flow that are generated by either fixating the center or edge of an object. To support our suggestion we derive an analytical model that shows: Tangentially fixating the outer surface of an obstacle leads to strong flow discontinuities that can be used for flow-based segmentation. Fixation of the target center while gaze and heading are locked without head-, body-, or eye-rotations gives rise to a symmetric expansion flow with its center at the point being approached, which facilitates steering toward a target. We conclude that gaze control incorporates ecological constraints to improve the robustness of steering and collision avoidance by actively generating flows appropriate to solve the task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号