首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abandonment of traditional land-use practices can have strong effects on the abundance of species occurring in agricultural landscapes. However, the precise mechanisms by which individual performance and population dynamics are affected are still poorly understood. To assess how abandonment affects population dynamics of Succisa pratensis we used data from a 4-year field study in both abandoned and traditionally grazed areas in moist and mesic habitats to parameterize integral projection models. Abandoned populations had a lower long-term stochastic population growth rate (λ S = 0.90) than traditionally managed populations (λ S = 1.08), while λ S did not differ between habitat types. The effect of abandonment differed significantly between years and had opposed effects on different vital rates. Individuals in abandoned populations experienced higher mortality rates and lower seedling establishment, but had higher growth rates and produced more flower heads per plant. Population viability analyses, based on a population survey of the whole study area in combination with our demographic models, showed that 32 % of the populations face a high risk of extinction (>80 %) within 20 years. These results suggest that immediate changes in management are needed to avoid extinctions and further declines in population sizes. Stochastic elasticity analyses and stochastic life table response experiments indicated that management strategies would be most effective if they increase survival of small plants as well as seedling establishment, while maintaining a high seed production. This may be achieved by varying the grazing intensity between years or excluding grazers when plants are flowering.  相似文献   

2.
Using field data from previous studies we built matrix models for two populations of giant rosettes, Espeletia timotensis Cuatrec. and E. spicata Sch. Bip. Wedd., from the Andes Cordillera in Mérida, Venezuela. We analysed the models and calculated population growth rate (λ), sensitivities, elasticities and the sensitivity of the elasticities to changes in the vital rates. The analysis showed that the two species behave alike in general demographic terms. In both models, population growth rate is positive and sensitivities of λ to changes in vital rates decrease markedly in this order: plant establishment, progression of juvenile–adult, germination and survival. The relative contributions of vital rates to λ (elasticities) are very similar to those of other woody plant species: a higher contribution of survival and a very low contribution of fecundity. Transition from seedling to juvenile is most important and the younger established stages (juveniles and young adults) play a predominant demographic role in both populations. Seed banks and older adults are playing a relatively minor role in the dynamics of both populations. However, they may be important in relation to unpredictable, favourable or detrimental events. Perturbation analysis of elasticities showed that increasing the rate of plant establishment will decrease the relative importance of stasis. We conclude that both species are demographically very close, and similar to other long‐lived woody plant species. However, the two species differ in the role of the seed bank, which seems more important in the demography of E. spicata than in E. timotensis.  相似文献   

3.
Understanding the factors limiting population growth is crucial for species management and conservation. We assessed the effects of seed and microsite limitation, along with climate variables, on Helianthemum squamatum, a gypsum soil specialist, in two sites in central Spain. We evaluated the effects of experimental seed addition and soil crust disturbance on H. squamatum vital rates (survival, growth and reproduction) across four years. We used this information to build integral projection models (IPMs) for each combination of management (seed addition or soil disturbance), site and year. We examined differences in population growth rate (λ) due to management using life table response experiments. Soil crust disturbance increased survival of mid to large size individuals and germination. Contributions to λ of positive individual growth (progression) and negative individual growth (retrogression) due to managements varied among years and sites. Soil crust disturbance increased λ in the site with the highest plant density, and seed addition had a moderate positive effect on λ in the site with lowest plant density. Population growth rate (λ) decreased by half in the driest year. Differences in management effects between sites may represent a shift from seed to microsite limitation at increasing densities. This shift underscores the importance of considering what factors limit population growth when selecting a management strategy.  相似文献   

4.
Demographic studies of imperiled populations can aid managers in planning conservation actions. However, applicability of findings for a single population across a species’ range is sometimes questionable. We conducted long-term studies (8 and 9 years, respectively) of 2 populations of the lizard Phrynosoma cornutum separated by 1000 km within the historical distribution of the species. The sites were a 15-ha urban wildlife reserve on Tinker Air Force Base (TAFB) in central Oklahoma and a 6000-ha wildland site in southern Texas, the Chaparral Wildlife Management Area (CWMA). We predicted a trade-off between the effect of adult survival and fecundity on population growth rate (λ), leading to population-specific contributions of individual vital rates to λ and individualized strategies for conservation and management of this taxon. The CWMA population had lower adult survival and higher fecundity than TAFB. As predicted, there was a trade-off in the effects of adult survival and fecundity on λ between the two sites; fecundity affected λ more at CWMA than at TAFB. However, adult survival had the smallest effect on λ in both populations. We found that recruitment in P. cornutum most affected λ at both sites, with hatchling survival having the strongest influence on λ. Management strategies focusing on hatchling survival would strongly benefit both populations. As a consequence, within the constraint of the need to more accurately estimate hatchling survival, managers across the range of species such as P. cornutum could adopt similar management priorities with respect to stage classes, despite intra-population differences in population vital rates.  相似文献   

5.
Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species.Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species.Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus.Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.  相似文献   

6.
Identifying environmental factors associated with vital rate variation is critical to predict population consequences of environmental perturbation. We used matrix models to explore effects of habitat and microsite on demography of two widespread herbs, Chamaecrista fasciculata (partridge pea) and Balduina angustifolia (yellow buttons). We evaluated models simulating population dynamics in common microsites (shrub, litter, bare sand) within two habitats (intact, degraded Florida scrub) using data on experimental populations initiated by sowing seeds, and natural seed production. Models included four stages (seed bank, small vegetative, large vegetative, reproductive) and three vital rates (survival, growth, fecundity), summarized in sixteen transitions. We conducted life table response experiments to assess contributions of each habitat and microsite to population growth rates. We found that (1) C. fasciculata had greatest population growth in degraded habitat and litter microsites, (2) B. angustifolia had similar population growth between habitats and greatest in bare sand microsites, (3) advancing growth transitions of C. fasciculata had greatest elasticity on population growth in degraded habitat, shrub, and litter, as did seed survival in intact habitat and bare sand, (4) seed survival and advancing growth transitions of B. angustifolia had greatest elasticity on population growth in both habitats, as did seed survival in shrub and litter, and advancing growth in bare sand. Greater population growth of C. fasciculata in degraded scrub is probably explained by release from belowground competition; B. angustifolia may be most affected by competition with shrubs. Microsites in intact scrub were not ecologically equivalent to those in degraded scrub emphasizing that intact scrub is ecologically complex and critical to preserve.  相似文献   

7.
Invasive plants often occupy large ranges in the introduced region and consequently, local population dynamics vary in ways that affect the potential for biological control. We used matrix models to describe how density and population growth rate of Centaurea solstitialis varies in time and space. Matrix models were parameterized with data collected over 4 years from invasions at the coast, interior valleys and Sierra Nevada Mountains in California (USA). Asymptotic population growth rates (λ) varied dramatically across all populations and years (0.24–6.45), density varied by an order of magnitude and had a measurable effect on survival and λ in all populations. We used simulations to estimate the degree to which a biocontrol agent would need to reduce plant survival to control the weed. Because seedling survival was dependent on density, an agent that reduced seedling density had the effect of increasing the probability that the remaining plants survived to flowering. Interestingly, this meant that in the highest density populations the plant had the largest compensatory response to agent attack and experienced decline (λ ≤ 1.0) only after heavy losses (≥90%) to the agent. Conversely, in populations where density was so low that it had only a weak effect on survival, the agent was able to control the plant (λ ≤ 1.0) at much lower levels of attack (≤50%). In other words, the impact of a biocontrol agent is predicted to be lower where the plant reaches its highest densities because the surviving plants, now experiencing less intraspecific competition, are more likely to survive to flowering and produce more seeds. This may also be true for other invasive species in which strong density dependent processes are operating. For this reason, prospective agents ought to target density-independence vital rates.  相似文献   

8.
Herbivores can have strong deleterious effects on vital rates (growth, reproduction, and survival) and thus negatively impact the population dynamics of plant species. In practice, however, these effects might be strongly correlated, for example as a result of tradeoffs between vital rates. To get better insights into the effects of herbivory on the population dynamics of the long‐lived grassland plant Primula veris population projection matrices were constructed from demographic data collected between 1999 and 2008 (nine annual transitions). Data were collected in two large grassland populations, each of which was subjected to two treatments (grazing by cattle versus a mowing treatment), yielding a total of 36 matrices. We applied a lower‐level vital rate life table response experiment (LTRE) using the small noise approximation (SNA) of the stochastic population growth rate to disentangle the contributions of changes in mean vital rates, variability in vital rates, correlations between vital rates and vital rate elasticities to the difference in the stochastic growth rate. Stochastic growth rates (a= log λS) were significantly lower in grazed than in mown plots (a= 0.0185 and 0.1019, respectively). SNA LTRE analysis showed that contributions of mean vital rates by far made the largest contribution to the observed difference in a between grazed and control plots. In particular, changes in sexual reproduction rates made the largest contributions to lower the stochastic growth rate in grazed plots: both adult flowering probabilities and flower and seed production were importantly lower in grazed populations, but these negative effects were largely buffered by increased establishment and seedling survival rates. Among the stochastic terms of the SNA decomposition, contributions of covariance and correlations between vital rates had the largest impact, whereas contributions of elasticities were smaller. The strongest correlation driver was the association between adult survival and seedling establishment, suggesting that environmental conditions favouring adult survival also are beneficial for seedling establishment. Overall, our results show that herbivory had a strong negative effect on the long‐term population growth rate of P. veris that was primarily mediated by differences in fecundity (flower and seed production) and germination.  相似文献   

9.
Many recent studies deal with within-species variation in seed mass and its consequences for plant growth. The possibility to explicitly separate the effects of population characteristics and seed mass are, however, usually hindered by availability of seeds of different size from different populations. We examined the effect of seed mass on germination, establishment, growth, and flowering of Scorzonera hispanica, a perennial herb. We used seeds of different masses from 20 populations, which differed greatly in size, habitat conditions, and genetic diversity. We selected seeds of the same range of seed masses from each population to ensure that all the variation in seed mass is represented within population.  相似文献   

10.
Global change is causing significant modifications to native plant communities. These effects can be direct through changes in productivity, or indirect through the spread of invading species. Identifying vital traits important for individual species’ response to environmental variation could be useful for making predictions about how entire communities may respond to global change. I studied the effects of factors associated with global change on the demography of an experimentally introduced species, Pityopsis aspera. In a Florida old-field, I investigated how warming, increased soil nitrogen and thinning of the extant plant community affected survival, growth and reproduction of P. aspera using a life table response experiment. The estimated population growth rate (λ) of P. aspera was reduced by nitrogen addition, as a result of decreased fecundity. However, λ increased in response to the warming treatment, as a result of increased fecundity. In the presence of thinning, both warming and nitrogen served to increase λ as a result of an increase in the growth of young individuals. This experiment illustrates how different vital rates contribute to the population level responses of an experimentally introduced plant to warming, and nitrogen deposition. Results also show how these demographic responses may occur via indirect effects through established species. This work highlights the importance of studying interactions among temperature, soil nitrogen and demography across the entire life cycle in order to capture the complex and, often, non-additive relationships mediating global change effects.  相似文献   

11.
Studies of exotic plant demography among habitats within its novel range may elucidate mechanisms of competitive dominance at local scales and invasive spread at landscape scales. We compared demographic trends of Anthriscus caucalis, an exotic herbaceous annual, across several plant communities within canyon grasslands of the Inland Pacific Northwest, USA. Greater observed survival and fecundity vital rates, as well as less spatial or temporal variability of vital rates, were considered indicators of greater plant community susceptibility to A. caucalis invasion. In addition, we investigated the role of differing habitat suitability across plant community types on potential landscape-level dispersal processes. To accomplish this objective, population matrix models were utilized to simulate stochastic transient (5 years) population growth rates (log λt) of A. caucalis under different net dispersal rate scenarios among the selected plant communities. We observed aboveground demography for 4 years within two bunchgrass community types and two shrub community types within a study area where livestock grazing occurred and within another study area that was not subjected to livestock grazing. Our results indicated that juvenile survival did not differ among communities, but the spatial variance of juvenile survival was significantly lower in shrub communities. Mean fecundity was significantly higher in high shrub (Celtis reticulata) communities compared to others, whereas spatial and temporal variances were significantly lower in high shrub communities compared to others. Within high shrub communities, total seed production was lower at the grazed site, which likely results from frequent livestock trampling within these refuge habitats. Under assumptions of no net seed dispersal, two of four bunchgrass sites maintained positive growth rates (log λt > 0; 95 % CI) whereas growth rates were positive in each shrub community. Notably, high shrub communities maintained positive growth rates under assumptions of 60 % net seed dispersal, while population growth rates in other communities declined with increasing net seed dispersal. In summary, our study suggests that high shrub communities are comparatively greater suitable habitat for A. caucalis growth and development and may act as source populations for invasive spread at a landscape scale.  相似文献   

12.
Ligularia sibirica is a relict wetland perennial plant species of the Czech and Slovak Republic. Explaining variation in population growth rate and identifying the causes of that variation is important for effective protection of such an endangered species. Matrix models based on four years of data of 11 populations were used to identify the pattern of variation in the demographic vital rates of this species, and to examine the causes of the variation such as population size and habitat type. Further, the matrix model was used to determine the population growth rate, longevity and risk of extinction of each population and to identify the specific vital rates that most affect population growth rate. The results showed that population growth rates were significantly different between years and populations. Temporal variation was mostly due to variable survival of adult individuals, while spatial variation was mainly driven by fertility of one small currently expanding population. Further, most studied populations of L. sibirica are performing well and only those growing in nitrogen-rich habitats have a high extinction risk. The results also indicate that all populations have low adult mortality, long-lived individuals (61.3?years on average) and some populations also show features of remnant populations (i.e., the persistence of populations in severe conditions in spite of no reproduction). Our results imply that detailed demographic data are needed to understand the long-term prospects of these populations. These data may serve as an early warning system for this species long before an obvious decline occurs in the populations.  相似文献   

13.
Annette Kolb 《Plant Ecology》2012,213(2):315-326
Plants often interact with antagonists such as herbivores or pathogens. Negative effects on individual plant performance are widely documented, but less is known about whether such effects translate into effects on population viability. In temperate forests, important herbivores include deer. During 2006–2009, I compared vital rates and population growth rates (calculated using integral projection models) between fenced exclosures and grazed control areas, using the perennial herb Phyteuma spicatum as a model species. Deer caused the largest damage to flowering individuals, removing about 24% of all inflorescences and 13% of the above-ground biomass. Only few vital rates seemed to be negatively affected by deer (mainly seed production) and this did not translate into effects on population growth rate. Contrary to expectations, population growth rates tended to be lower in the fenced exclosures in 1 year. This was likely caused by high-pathogen infestation rates, which negatively affected the probability of adult survival and growth. Population growth rate was more sensitive to changes in these vital rates than to changes in seed production. In summary, the results of this demographic study show that grazing effects may be small for long-lived herbs, and that negative effects on vital rates such as seed production may not always translate into effects on population growth rate. The findings also illustrate that other antagonists such as pathogens may be of greater relative importance for differences in population performance than herbivores.  相似文献   

14.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

15.
In mountainous areas, native and non-native plants will be exposed to climate change and increased disturbance in the future. Non-native plants may be more successful than natives in disturbed areas and thus be able to respond quicker to shifting climatic zones. In 2009, monitoring plots were established for populations of a non-native species (Linaria dalmatica) and a closely related native species (Castilleja miniata) on an elevation gradient in the Greater Yellowstone Ecosystem, USA. Population data were collected twice during the growing season for 3 years and used to calculate population vital rates for both species, and to construct population dynamics models for L. dalmatica. Linaria dalmatica vital rates were more associated with climatic/environmental factors than those of C. miniata. Population dynamics models for L. dalmatica showed no trend in population growth rate (λ) vs. elevation. The highest λ corresponded with the lowest vegetation and litter cover, and the highest bare ground cover. All populations with λ < 1 corresponded with the lowest measured winter minimum temperature. There was a negative association between λ and number of weeks of adequate soil moisture, and a weak positive association between λ and mean winter minimum temperature. Variance in vital rates and λ of L. dalmatica suggest broad adaptation within its current range, with the potential to spread further with or without future changes in climate. There is evidence that λ is negatively affected by persistent soil moisture which promotes the growth of other plant species, suggesting that it might expand further if other species were removed by disturbance.  相似文献   

16.
Understanding variation in plant vital rates (survival, growth, and reproduction) and population demographic parameters for rare plant taxa facilitates effective management for long-term persistence. We evaluated demographics of the rare plant Astragalus peckii (Fabaceae), a state-listed Threatened plant in Oregon, USA, with particular emphasis on how a microlepidopteran herbivore, Sparganothis tunicana, impacted vital rates and population growth. Stage-based transition matrix models were used to compute population growth rate (λ) and elasticity from 2006 to 2009 at two populations: Bull Flat, which was located in the main population center; and Chiloquin, a naturally isolated population. Population growth at Bull Flat was stable to slightly declining (λ = 0.96, 95 % CI 0.91–1.00) whereas at Chiloquin, the isolated population, population growth was increasing (λ = 1.20, 95 % CI 1.15–1.24). Microlepidopteran herbivory was associated with different plant responses in each population. At Bull Flat, plant survival was lower with greater herbivore presence. At Chiloquin, reproduction was reduced in plants when herbivores were active earlier in the growing season. Despite these effects on plant vital rates, we found lower population growth only during one transition period at Bull Flat when we compared matrices with and without herbivory. In addition to herbivory, we also address the potential role precipitation plays as a contributor to site differences and temporal variation within sites. Overall, we illustrate how two populations can have different responses to the same disturbance factor and highlight implications for management of different populations across the landscape.  相似文献   

17.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

18.
Habitat fragmentation and loss affect population stability and demographic processes, increasing the extinction risk of species. We studied Anolis heterodermus populations inhabiting large and small Andean scrubland patches in three fragmented landscapes in the Sabana de Bogotá (Colombia) to determine the effect of habitat fragmentation and loss on population dynamics. We used the capture‐mark‐recapture method and multistate models to estimate vital rates for each population. We estimated growth population rate and the most important processes that affect λ by elasticity analysis of vital rates. We tested the effects of habitat fragmentation and loss on vital rates of lizard populations. All six isolated populations showed a positive or an equilibrium growth rate (λ = 1), and the most important demographic process affecting λ was the growth to first reproduction. Populations from landscapes with less scrubland natural cover showed higher stasis of young adults. Populations in highly fragmented landscapes showed highest juvenile survival and growth population rates. Independent of the landscape's habitat configuration and connectivity, populations from larger scrubland patches showed low adult survivorship, but high transition rates. Populations varied from a slow strategy with low growth and delayed maturation in smaller patches to a fast strategy with high growth and early maturation in large patches. This variation was congruent with the fast‐slow continuum hypothesis and has serious implications for Andean lizard conservation and management strategies. We suggest that more stable lizard populations will be maintained if different management strategies are adopted according to patch area and habitat structure.  相似文献   

19.
The influence of native fauna on non-native plant population growth, size, and distribution is not well documented. Previous studies have shown that native insects associated with tall thistle (Cirsium altissimum) also feed on the leaves, stems, and flower heads of the Eurasian congener C. vulgare, thus limiting individual plant performance. In this study, we tested the effects of insect herbivores on the population growth rate of C. vulgare. We experimentally initiated invasions by adding seeds at four unoccupied grassland sites in eastern Nebraska, USA, and recorded plant establishment, survival, and reproduction. Cumulative foliage and floral herbivory reduced C. vulgare seedling density, and prevented almost any reproduction by C. vulgare in half the sites. The matrix model we constructed showed that this herbivory resulted in a reduction of the asymptotic population growth rate (λ), from an 88 % annual increase to a 54 % annual decline. These results provide strong support for the hypothesis that indigenous herbivores limit population invasion of this non-native plant species into otherwise suitable grassland habitat.  相似文献   

20.
Changes in land use have resulted in a strong decline in the plant diversity of nutrient-poor grasslands, but little is known about the combined effects of habitat degradation and fragmentation on populations of individual species. We studied these effects on stage structure, recruitment, reproduction and offspring fitness in populations of the declining perennial grassland plant Trifolium montanum in central Germany. Density and survival probability of juvenile plants decreased with light competition, measured as leaf area index (LAI) above T. montanum plants, resulting in aged populations with few juvenile plants at unmanaged sites with higher LAI. Reproduction of T. montanum was not related to LAI, but increased strongly with local density, suggesting pollinator limitation in fragmented populations with a low density of flowering plants. In the common garden, the survival of sown offspring increased with mean seed size, whereas seed production of offspring decreased with isolation, and in strong contrast to previous studies, also decreased with size and density of the population of origin. This could be due to increased inbreeding because of pollination between closely related neighbouring plants in dense and large populations. Our results indicate that both habitat degradation and fragmentation have negative effects on populations of T. montanum, but affect different phases of the life cycle. In the short term, the effects of habitat degradation are more important than those of fragmentation, and populations of T. montanum are primarily threatened by an increase in light competition in unmanaged sites, which rapidly affects the dynamics of the populations. The observed opposite effects of habitat fragmentation on reproduction and offspring fitness indicate that the effects of population size, density and isolation on plant fitness and population viability may be complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号