首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of pollen grains in the air was studied using two aerobiological volumetric Hirst-type spore traps, one at ground level and the other at a height of 16 m on a terrace. The study was carried out between 2009 and 2011, from March to June in Badajoz (SW Spain). Intradiurnal and daily pollen counts were compared with both, different meteorological parameters and the distribution of local pollen sources. Forty-six pollen types were identified and 89 % of the total grains corresponded to Quercus, Poaceae, Olea, Pinaceae and Plantago pollen types, in descending order. The mean height ratio of the daily pollen count was 1.02. Significant correlations were observed when comparing daily pollen counts for predominant pollen types at both levels. The comparisons have shown significant differences in the daily pollen count between the two samplers in the case of Olea and Pinaceae, but not for Quercus, Poaceae and Plantago. Similar results were obtained using the intradiurnal airborne pollen database. No significant correlation has been found between pollen count and the different meteorological parameters, showing no dependence on height. These differences of Olea and Pinaceae may be explained in part by the uneven distribution of the pollen sources and the disturbance by nearby buildings. The temporal variation patterns between the two sites were similar; however, taking into account the average of the data, the higher values were obtained first at the ground level and later at 16 m.  相似文献   

2.

Olive is recognized as a crop with great impact in agricultural, socioeconomic, environmental and public health sectors. The last is becoming more important during recent years as consequence of the increase of the pollen allergy in south Europe prompted by the widespread Olea pollen allergic reactions. The aim of the study was to quantify, for the first time, the variations of the Ole e 1 allergen amount in Olea pollen grains from four cultivars in three regions of Portugal. How weather parameters can affect the allergen production was also assessed. The study was conducted in three olive producer areas of Portugal from 2010 to 2013, Santarém (Central), Elvas (Southeast) and Mirandela (Trás-os-Montes region, Northeast). Mature pollen of four different cultivars (Cobrançosa, Arbequina, Picual and Verdeal) was collected during the olive flowering season. Ole e 1 was quantified using specific 2-site antibody ELISA. Pollen of the olive groves at the boundary Olea bioclimatic distribution in the Mirandela registered the higher allergen content for all varieties in each study year. Arbequina was the variety that showed the lower Ole e 1 allergen concentration, whereas the higher content was registered for Cobrançosa. The main meteorological parameters that influenced the allergen Ole e 1 concentration in the pollen grains were the rainfall and temperatures related variables. The knowledge of the allergenicity in different olive cultivars is an important tool in the selection of the most adequate for planting as ornamental crop and to adjust the pollen extracts used for diagnosis or even immunotherapy.

  相似文献   

3.
The present study seeks to compare daily and hourly airborne pollen concentrations at eight different stations in Castilla-La Mancha (central Spain) and Extremadura (south-western Spain) and assess pollen distribution sources. Sampling stations were located 69–440 km apart in a straight line in Albacete, Toledo, Talavera de la Reina and Ciudad Real in Castilla-La Mancha, and in Badajoz, Plasencia, Santa Amalia and Zafra in Extremadura. Airborne pollen was collected using Hirst-type volumetric spore traps. Quercus was the most abundant pollen type at all stations except for Ciudad Real, where Olea pollen predominated. Comparisons of daily data between pairs of stations revealed statistically significant positive correlations in all cases for Poaceae and Olea. Comparisons of hourly data between stations indicated greater differences than daily data. Analysis of correlation coefficients and straight-line distances between stations revealed a strong negative correlation. Analysis of total airborne pollen data for the eight sampling stations suggests that airborne pollen concentrations decrease from west to east and from south to north, partly reflecting dominant wind patterns. A clear correlation was observed between airborne pollen concentrations and the surface area covered by olive crops in a 50 km radius around the sampling stations.  相似文献   

4.
The possible existence of altitudinal fluctuations in the seasonal behaviour of the olive pollen emission was studied. Three pollen volumetric samplers distributed in olive groves all over the altitudinal cliseries of the province of Jaén (south-east Spain) were used. Pollen emission data were recorded during a 3-year period (2007–2009). This research has revealed the effect of altitude on consecutive olive pollen season in the province of Jaén. The first pollen grains were detected in the olive growing areas located within the area of the Guadalquivir River, where are found the lowest levels of altitude into the province. A notable delay in the pollination season of the olive groves located at higher altitudes was observed. Geographical fluctuations on both daily pollen concentrations and number of critical days were also detected. Accumulated variables of temperature and precipitation since the start of the pre-flowering period have been shown to be two of the main factors affecting olive pollen levels. The fluctuations observed in the olive pollen season may similarly occur in the case of other allergenic plant species such as cypress (Cupressaceae), plane tree (Platanaceae) or grasses (Poaceae). Furthermore, and for the clinical consequences of the findings presented in this study, we believe that it would be advisable to install a micro-aerobiological network permanently in the province of Jaén.  相似文献   

5.
Phenological and aerobiological studies provide important information regarding the reproductive biology of cultivated species such as the olive. This article presents the results of an exploratory study of the floral phenology of Olea europaea L. at different altitudes in Jaén province (SE Spain) and an analysis of the main meteorological factors affecting flowering. As well, this study aimed to detect the relationship between phenology and olive pollen emission as a means of interpreting Olea pollen curves in the city of Jaén. Phenological observations were performed on olive trees at six sites, each at different altitudes and distributed over the whole area of olive cultivation in the province. Pollen data were obtained using a Hirst-type volumetric spore trap located within the city of Jaén. Phenological and aerobiological data were recorded in 2006 and 2007. This study shows that the chronology of the start of the flowering period depends on altitude. Statistical analyses indicate that the temperature, humidity, cumulative rainfall and cumulative solar radiation are the meteorological parameters that most affect olive floral phenology. The pollen season in Jaén generally lasts from May to June, with an annual total emission of over 40,000 pollen grains, the highest annual level of olive pollen emission in the world. The airborne pollen concentrations recorded in the city of Jaén are above all influenced by the olive groves located in the Guadalquivir valley.  相似文献   

6.
Aerobiological studies carried out in the atmosphere of Granada using a Hirst-type volumetric spore trap during the period 1993-1996 show that there is not a single diurnal pattern for olive pollen (Olea europaea L.) over the course of the main pollen season. Examination of the behaviour of airborne olive pollen concentration allows the establishment of either regular (54.4% of the studied days) or irregular (45.6% of the time) patterns of diurnal variation. On a given day, the pattern found will depend on a combination of different factors: the origin of the captured pollen (either local or regional), source distribution in relation to the pollen sampler, topography, and different meteorological variables (mean air temperature, sunshine hours, total rainfall, relative humidity, wind speed and direction, and periods of calm). Regional sources were significant contributors to city centre pollen concentrations when moderate (< 10 km/h) winds from the 4th quadrant and warm temperatures (19-26 C) allow swift transport from the W-NW of the province.  相似文献   

7.
A study over six consecutive years of the pollination dynamics of the Amaranthaceae and Chenopodiaceae in Badajoz, and a comparative study over three years with stations in Mérida and Cáceres showed that there were different factors affecting this process. Thus, the proximity of croplands was found to be important in determining the magnitude of the concentrations, and this was also confirmed with a study of the concentrations measured directly in the croplands. Autumn and summer rainfall was found to affect, and also to have a certain influence on the length of the flowering period. The daily variations in pollen levels were studied in relation to meteorological parameters, finding a correlation that was positive with respect to temperature and negative with respect to atmospheric humidity and the distance travelled by the wind, i.e. airflow measured in hm with a revolving-cup anemometer. These correlations were the same in all three of the localities studied. The direction of the wind, however, was found to have different effects according to the locality studied. This is explained by their positions relative to the irrigation zones in the region. The pattern of diurnal pollen release from these taxa shows the greatest levels to be reached between 10:00 and 12:00 hours in Mérida as well as in Badajoz. In Cáceres, however, the distribution throughout the day was very even, with few hourly variations. This may be due to the sparse representation of these species in the neighbourhood of the Cáceres trap, with the pollen having been transported from sources that were farther away.  相似文献   

8.
Aerobiological and phenological investigation has been linked to analyse the flowering phenomena of olive (Olea europaea L.), a tree of economic importance, in Umbria, central Italy.

Olive tree flowering was analysed by phenological observations in olive groves. Aerobiological monitoring was carried out with pollen traps that captured the pollen grains in the atmosphere by remote distances. This combined study of flowering was useful in overcoming the principal limit of phenological observations caused by their geographical narrowness.

Eleven phenological stations in Perugia province were used and periodic observations were carried out during the flowering season. Two aerobiological stations located near the cities of Perugia and Spoleto were utilized to trap olive pollen grains in the atmosphere.

Graphic and statistical analyses were used in order to study flowering dynamics, and to compare the methodological approaches.

The phenological areas, according to their characteristics, were divided in two clusters each one related to a different pollen monitoring station. Statistical analyses showed the presence of a three ‐ four‐day period during which pollen released in the groves is persistent in the narrowness and resulted in a high correlation with the pollen monitored by the pollen traps. On the other hand, the phenological data considered along with the daily pollen concentrations permit the pollen peaks to be attributed to particular olive areas or olive cultivars. This demonstrates that both methodologies can be used effectively as integrated research tools in this kind of study.  相似文献   

9.
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.  相似文献   

10.
Oleaceae pollen concentrations in the Trieste area are low (<10%) compared to the total number of airborne pollen grains, with only one pollination peak at the beginning of June when the Oleaceae concentration reached 62% of the total pollen count in 1992. This peak was due to an exceptionally high pollination of olive trees in 1992, when airborne pollen concentration rose to 1357 pollen grains/m3 on June 3. Sensitization toOlea increased from 1989 to 1993, when it was present in 23.4% of symptomatic patients, but the role ofOlea in inducing allergic respiratory symptoms is difficult to evaluate because almost all patients were sensitized to other pollens, and in particular to Gramineae: only four subjects were sensitized toOlea alone (1.4%). Despite the low Oleaceae pollen counts, this pollinosis is increasing, probably because of increased cultivation ofOlea in recent years. However, although skin prick test positivity is common in polysensitized patients, its role in inducing sensitization and symptoms is presently less important than that of other pollens.  相似文献   

11.

Raindrops brim with pollen even when there is no ambient local pollen. How does this nonlocal pollen get inside rain? The likely answer is long-range transport beneath or inside clouds. To test this hypothesis, we captured rain-delivered pollen on Ocracoke Island, NC, USA over a 12-day interval before local pine pollen release then reconstructed its trajectory and its atmospheric exposure conditions. Findings were as follows: four rain episodes yielded a total of 632 pollen grains of which 6.7% germinated. To find pollen sources, we first identified pollen-releasing forested areas using a predictive heat sum equation for each rain episode. Next, we constructed the backward trajectory for air parcels carrying rain-delivered pollen from those forests using the MLDP atmospheric transport and dispersion model. Nonlocal sources were located at distances up to 300 km from Ocracoke Island and distances lessened with each successive episode. Below-cloud transport time was 8 and 17 h for Episodes A and B, respectively. Pollen grains were exposed to harsh atmospheric conditions during below-cloud transport, yet some grains still germinated. Atmospheric turbulence patterns changed for each episode, so distance from pollen source was poorly correlated with pollen transport time. Pollen germination was not closely correlated with either distances or transport time. In-cloud transport was more likely for pollen sampled during Episodes C and D. Pine pollen, although rarely allergenic, brings fresh insights into how atmospheric events can trigger human respiratory distress.

  相似文献   

12.
SILAM atmospheric dispersion model and the HYSPLIT trajectory model were used to detect the source areas and calculate transport dynamics for airborne olive pollen observed in the city of Córdoba, southwest of Iberian Peninsula. The ECMWF weather data with 3-h time interval and spatial resolution of 25 × 25 km2 and 75 hybrid vertical levels were used as meteorological inputs in both models to produce a coherent set of results in order to compare these two different approaches. Seven episodes recorded before and after the local flowering season in 2006 were analyzed using both models. The results provided an indication of the origins of olive pollen recorded in the city of Córdoba, revealing the influence of three main source areas at specific periods. One area was located nearby, to the southwest of the city (early May), another in the south of the province (mid-May) and the third to the east (late May/early June). The SILAM model yielded more detailed and quantitative results when identifying olive pollen sources and charting transport dynamics. The results from the HYSPLIT trajectory approach and SILAM footprints were qualitatively similar. However, a weak point of back trajectories was their lower sensitivity to details of the transport, as well as the necessity of subjective analysis of the trajectory plots, which were subject for possible misinterpretations. Information on both pollen source locations and local tree flowering phenology was required in order to ensure consistent analysis of the influence of olive sources for both models. Further than this, due to the fact that both models are widely used in other research areas, the results of this work could have a widespread range of application, such as to simulate the transport of radionuclides, e.g., in emergency preparedness exercises.  相似文献   

13.
The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source–receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89–97% of annual counts of the highly allergenous Olea originates from extra-regional sources in southern Iberia and northern Africa.  相似文献   

14.
Increased anthropogenic influence is expected to reduce the size of natural populations, which may decrease individual fecundity and long-term survival. However, it is unclear whether populations of a species that occur in a variety of habitats will suffer decreased fecundity similarly. Certain habitats, such as those in agricultural landscapes that used to undergo traditional management, may be altered more than others and therefore individuals within such populations may be more prone to decreased fecundity. This is particularly important to quantify in Mediterranean landscapes, where habitat change is a major threat to biodiversity. We examined the fecundity of 88 populations of the orchid Spiranthes spiralis, across multiple habitats on the Greek island of Lesvos. In each population we recorded both the habitat and geological substrate. At the end of the flowering season, population size was quantified in each population by counting the number of fruiting plants and the percentage fruit set was determined. To test whether seed set was reduced due to pollination limitation we performed a pollen supplementation experiment. Large populations had significantly lower fruit set than small populations, and this effect was most pronounced in olive groves. Pollen supplementation showed that S. spiralis may suffer reduced seed set due to pollen limitation. The results of this study show that larger olive grove populations may be pollinator-limited and there may be two reasons for this: first, olive groves are less favourable sites for honeybees – the major and more efficient pollinators of S. spiralis on Lesvos; second, such populations have been suffering severe management changes in recent years (e.g. chemical treatments, chopping) and are most vulnerable to reductions in reproductive output.  相似文献   

15.
Temperature is one of the main factors affecting the start of flowering in tree species that flower at the beginning of spring. Knowledge of the chilling and heat needs required by plants to overcome the period of dormancy enables us to determine the onset of pollination, which is of great importance to allergy sufferers. This study attempted to obtain behaviour models with a view to determining both the onset of the olive pollen season and daily pollen concentrations during the pollination period in Vigo. Monitoring was carried out using a Lanzoni VPPS 2000 pollen trap, from 1995 to 2002 inclusive.

Olea pollen is mainly detected during the spring, principally in May. Given the geographical location, the very limited presence of this tree in the study area and the low Olea pollen concentrations detected in northern Spain as a whole, the values recorded here in the atmosphere of Vigo are particularly striking. A strong correlation was observed between total quantity olive pollen collected over the season and rainfall recorded during the second fortnight in February. According to the proposed model, an average of 680 Chilling Hours (CH) are necessary to overcome the chill period and break the state of bud dormancy, and 481 Growth Degree Days (GDD) °C are needed to induce flowering. Models for predicting daily mean pollen concentrations combine temperature and the previous days' pollen concentrations as predictor variables to provide a high level of prediction.  相似文献   

16.
The airborne pollen concentration in the city of Badajoz was measured in two locations 2.9 km apart. The measurements were taken from January to June between 2009 and 2012 using Hirst-type volumetric aerobiological samplers. One sampler was placed at the Faculty of Science (FS) and the other at the Agricultural Engineering School (AES) of the University of Extremadura, Spain, on terraces located 16 and 6 m above ground, respectively. The two sets of hourly and daily pollen concentrations were compared regarding the meteorological parameters and the distribution of local pollen sources. A total of 46 pollen types were counted, with a mean total concentration of 43 pollen grains/m³ in the winter and 336 pollen grains/m³ in the spring. In the winter, pollen grains from (in decreasing order) Cupressaceae, FraxinusPhillyrea, Urticaceae spp., Alnus glutinosa and Urtica membranacea types represented 77 % of the total. In the spring, 89 % of the total was represented by pollen grains from (in decreasing order) Quercus, Poaceae, Olea, Pinaceae and Plantago. The FS/AES ratio was 0.57 in the winter and 1.31 in the spring. While a Wilcoxon test applied to the daily total concentration data showed statistically significant differences between the two sites, a correlation study based on the Spearman coefficient showed statistically significant correlations in both the winter and spring. The results were similar when comparing the separate pollen types, except for Urticaceae spp., which showed no statistically significant correlation. The meteorological data studied showed a statistically significant correlation with the daily concentrations. A comparison of the hourly concentration data showed no correspondence with the time of maximum concentration. The local distribution of pollen sources explained some of the differences found between the two sites. Overall, the results indicate that a single aerobiological sampler may be sufficiently representative to register the daily pollen grain data of an urban area of approximately 3 km or greater in diameter, although it underestimates the influence of heterogeneity in the distribution of the local flora.  相似文献   

17.
Phenological records as a complement to aerobiological data   总被引:1,自引:0,他引:1  
Phenological studies in combination with aerobiological studies enable one to observe the relationship between the release of pollen and its presence in the atmosphere. To obtain a suitable comparison between the daily variation of airborne pollen concentrations and flowering, it is necessary for the level of accuracy of both sets of data to be as similar as possible. To analyse the correlation between locally observed flowering data and pollen counts in pollen traps in order to set pollen information forecasts, pollen was sampled using a Burkard volumetric pollen trap working continuously from May 1993. For the phenological study we selected the main pollen sources of the six pollen types most abundant in our area: Cupressaceae, Platanus, Quercus, Plantago, Olea, and Poaceae with a total of 35 species. We selected seven sites to register flowering or pollination, two with semi-natural vegetation, the rest being urban sites. The sites were visited weekly from March to June in 2007, and from January to June in 2008 and 2009. Pollen shedding was checked at each visit, and recorded as the percentage of flowers or microsporangia in that state. There was an association between flowering phenology and airborne pollen records for some of the pollen types (Platanus, Quercus, Olea and Plantago). Nevertheless, for the other types (Cupressaceae and Poaceae) the flowering and airborne pollen peaks did not coincide, with up to 1 week difference in phase. Some arguments are put forward in explanation of this phenomenon. Phenological studies have shown that airborne pollen results from both local and distant sources, although the pollen peaks usually appear when local sources are shedding the greatest amounts of pollen. Resuspension phenomena are probably more important than long-distance transport in explaining the presence of airborne pollen outside the flowering period. This information could be used to improve pollen forecasts.  相似文献   

18.
An aeropalynological study was carried out in the atmosphere of the city of Nerja (southern Spain) during a period of 4 years (2000–2003), using a Hirst type volumetric pollen trap. An annual pollen index of 59,750 grains, on average, was obtained with 80–85% of the total pollen recorded from February to May, with Pinus, Olea, Urticaceae, Cupressaceae, Quercus and Poaceae being the principal pollen producers in abundance order. A total of 29 pollen types that reached a 10-day mean equal to or greater than 1 grain of pollen per m3 of air is reflected in a pollen calendar. The results were compared with those obtained for nearby localities and a correlation analysis was made between the daily fluctuations of the main pollen types and total pollen, and meteorological parameters (temperature, rainfall and hours of sun). The daily, monthly and annual values reached by the most important pollen types from an allergenic point of view (Olea, Urticaceae and Poaceae) confirms Nerja as a high-risk locality for the residents and the numerous tourists who visit the area.  相似文献   

19.
The daily pollen concentration in the atmosphere of Badajoz (SW Spain) was analysed over a 6-year period (1993–1998) using a volumetric aerobiological trap. The results for the main pollination period are compared with the number of hours of wind each day in the four quadrants: 1 (NE), 2 (SE), 3 (SW) and 4 (NW). The pollen source distribution allowed 16 pollen types to be analysed as a function of their distribution in the four quadrants with respect to the location of the trap. Four of them correspond to species growing in an irrigated farmland environment (Amaranthaceae-Chenopodiaceae, Plantago, Scirpus, and Typha), five to riparian and woodland species (Salix, Fraxinus, Alnus, Populus, and Eucalyptus), four to urban ornamentals (Ulmus, Arecaceae, Cupressaceae, and Casuarina), and three which include the most frequent pollen grains of widely distributed species (Poaceae, Quercus, and Olea). The results show that the distribution of the sources and the wind direction play a very major role in determining the pollen concentration in the atmosphere when these sources are located in certain quadrants, and that the widely distributed pollen sources show no relationship with wind direction. In some years the values of the correlations were not maintained, which leads one to presume that, in order to draw significant conclusions and establish clear patterns of the influence of wind direction, a continuous and more prolonged study will be required. Received: 6 May 1999 / Revised: 30 March 2000 / Accepted: 31 March 2000  相似文献   

20.
A study of the diurnal variations of airborne birch pollen in Sweden showed that the effect of rainfall on pollen counts is more complex than was previously thought. Most of the pollen counting sites in Sweden showed the same pattern of diurnal variations as described by other observers, i. e. lower concentrations during the early morning and a maximum in the middle of the day or early in the evening. Especially in one pollen counting site, viz, in Östersund, near the geographical centre of Sweden, we noted many occasions when the concentration of birch pollen increased concurrently with the beginning of heavy showers of rain. A few hours later the number of pollen grains decreased, when the pollen was washed out of the air. We noted great differences in the occurrence of such pollen peaks between different parts of the country. The phenomenon was more frequent in Östersund than in Stockholm, maybe due to the differing topography. Heavy rains seem to be more influential if large amounts of pollen have previously been brought high up into the air, e.g. by warm air or by long-distance transport of pollen, and this should be considered when making pollen forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号