首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heritability estimates for specific language impairment (SLI) have been inconsistent. Four twin studies reported heritability of 0.5 or more, but a recent report from the Twins Early Development Study found negligible genetic influence in 4-year-olds. We considered whether the method of ascertainment influenced results and found substantially higher heritability if SLI was defined in terms of referral to speech and language pathology services than if defined by language test scores. Further analysis showed that presence of speech difficulties played a major role in determining whether a child had contact with services. Childhood language disorders that are identified by population screening are likely to have a different phenotype and different etiology from clinically referred cases. Genetic studies are more likely to find high heritability if they focus on cases who have speech difficulties and who have been referred for intervention.  相似文献   

2.
Specific language impairment (SLI) is the term used to refer to unexplained difficulties in language acquisition in children. Over the past decade, there has been rapid growth of evidence indicating that genes play an important part in the aetiology of SLI. However, further progress in elucidating the role of genes in causing SLI is limited by our lack of understanding of the phenotype. Studies to date have been hampered by the fact that we do not know whether SLI should be treated as a discrete disorder or a continuous variable, let alone which measures should be used to identify cases, or how many subtypes there are. Recent research suggests that theoretically motivated measures of underlying processes may be better than conventional clinical diagnoses for identifying aetiologically distinct types of language impairment. There has been a tendency for researchers to embrace parsimony and look for a single cause of SLI-or in any event, to identify different subtypes, each with a different single cause. Research is reviewed that suggests that may not be a fruitful approach to SLI, and that an approach in terms of multiple risk and protective factors, which is widely adopted in medicine, is more realistic.  相似文献   

3.
This study presents experimental results examining the production of perfective past tense forms of Greek in eighteen individuals with Specific Language Impairment (SLI) in comparison to typically developing children. We found that both individuals with SLI and typically developing children were more accurate in producing sigmatic than non-sigmatic verb forms. On the other hand, children with SLI were found to be impaired in their use of sigmatic forms and to over-rely on non-sigmatic forms, relative to typically developing children. We discuss linguistic and neuro-psychological accounts of these findings. In addition, we compare the SLI data with data from individuals with a different genetic disorder (Williams Syndrome), and show that individuals with Williams Syndrome exhibit different performance patterns.  相似文献   

4.
Disorders of human communication abilities can be classified into speech and language disorders. Speech disorders (e.g., dyspraxia) affect the sound generation and sequencing, while language disorders (e.g., dyslexia and specific language impairment, or SLI) are deficits in the encoding and decoding of language according to its rules (reading, spelling, grammar). The diagnosis of such disorders is often complicated, especially when a patient presents more than one disorder at the same time. The present review focuses on these challenges. We have combined data available from the literature with an in silico approach in an attempt to identify putative miRNAs that may have a key role in dyspraxia, dyslexia and SLI. We suggest the use of new miRNAs, which could have an important impact on the three diseases. Further, we relate those miRNAs to the axon guidance pathway and discuss possible interactions and the role of likely deregulated proteins. In addition, we describe potential differences in expressional deregulation and its role in the improvement of diagnosis. We encourage experimental investigations to test the data obtained in silico.  相似文献   

5.
The aim was to study a broader phenotype of language‐related diagnoses and problems in three generations of relatives of children with specific language impairment (SLI). Our study is based on a family history interview of the parents of 59 children with SLI and of 100 matched control children, exploring the prevalence of problems related to language, reading, attention, school achievement and social communication as well as diagnoses such as attention‐deficit hyperactivity disorder (ADHD), autism, Asperger syndrome, dyslexia, mental retardation, cleft palate and stuttering. The results show a spectrum of language‐related problems in families of SLI children. In all three generations of SLI relatives, we found significantly higher prevalence rates of language, literacy and social communication problems. The risk of one or both parents having language‐related diagnoses or problems was approximately six times higher for the children with SLI (85%) than for the control children (13%) (odds ratio = 37.2). We did not find a significantly higher prevalence of the diagnoses ADHD, autism or Asperger syndrome in the relatives of the children with SLI. However, significantly more parents of the children with SLI had problems with attention/hyperactivity when compared with the parents of controls. Our findings suggest common underlying mechanisms for problems with language, literacy and social communication, and possibly also for attention/hyperactivity symptoms.  相似文献   

6.
Children who fail to develop language normally-in the absence of explanatory factors such as neurological disorders, hearing impairment, or lack of adequate opportunity-are clinically described as having specific language impairment (SLI). SLI has a prevalence of approximately 7% in children entering school and is associated with later difficulties in learning to read. Research indicates that genetic factors are important in the etiology of SLI. Studies have consistently demonstrated that SLI aggregates in families. Increased monozygotic versus dizygotic twin concordance rates indicate that heredity, not just shared environment, is the cause of the familial clustering. We have collected five pedigrees of Celtic ancestry that segregate SLI, and we have conducted genomewide categorical linkage analysis, using model-based LOD score techniques. Analysis was conducted under both dominant and recessive models by use of three phenotypic classifications: clinical diagnosis, language impairment (spoken language quotient <85) and reading discrepancy (nonverbal IQ minus non-word reading >15). Chromosome 13 yielded a maximum multipoint LOD score of 3.92 under the recessive reading discrepancy model. Simulation to correct for multiple models and multiple phenotypes indicated that the genomewide empirical P value is <.01. As an alternative measure, we also computed the posterior probability of linkage (PPL), obtaining a PPL of 53% in the same region. One other genomic region yielded suggestive results on chromosome 2 (multipoint LOD score 2.86, genomic P value <.06 under the recessive language impairment model). Our findings underscore the utility of traditional LOD-score-based methods in finding genes for complex diseases, specifically, SLI.  相似文献   

7.
8.
Association of specific language impairment (SLI) to the region of 7q31   总被引:16,自引:0,他引:16  
FOXP2 (forkhead box P2) was the first gene characterized in which a mutation affects human speech and language abilities. A common developmental language disorder, specific language impairment (SLI), affects 6%-7% of children with normal nonverbal intelligence and has evidence of a genetic basis in familial and twin studies. FOXP2 is located on chromosome 7q31, and studies of other disorders with speech and language impairment, including autism, have found linkage to this region. In the present study, samples from children with SLI and their family members were used to study linkage and association of SLI to markers within and around FOXP2, and samples from 96 probands with SLI were directly sequenced for the mutation in exon 14 of FOXP2. No mutations were found in exon 14 of FOXP2, but strong association was found to a marker within the CFTR gene and another marker on 7q31, D7S3052, both adjacent to FOXP2, suggesting that genetic factors for regulation of common language impairment reside in the vicinity of FOXP2.  相似文献   

9.
10.
Deficits in phonological short-term memory and aspects of verb grammar morphology have been proposed as phenotypic markers of specific language impairment (SLI) with the suggestion that these traits are likely to be under different genetic influences. This investigation in 300 first-degree relatives of 93 probands with SLI examined familial aggregation and genetic linkage of two measures thought to index these two traits, non-word repetition and tense marking. In particular, the involvement of chromosomes 16q and 19q was examined as previous studies found these two regions to be related to SLI. Results showed a strong association between relatives' and probands' scores on non-word repetition. In contrast, no association was found for tense marking when examined as a continuous measure. However, significant familial aggregation was found when tense marking was treated as a binary measure with a cut-off point of −1.5 SD, suggestive of the possibility that qualitative distinctions in the trait may be familial while quantitative variability may be more a consequence of non-familial factors. Linkage analyses supported previous findings of the SLI Consortium of linkage to chromosome 16q for phonological short-term memory and to chromosome 19q for expressive language. In addition, we report new findings that relate to the past tense phenotype. For the continuous measure, linkage was found on both chromosomes, but evidence was stronger on chromosome 19. For the binary measure, linkage was observed on chromosome 19 but not on chromosome 16.  相似文献   

11.
Many children with specific language impairment (SLI) have persisting problems in the correct use of verb tense, but there has been disagreement as to the underlying reason. When we take into account studies using receptive as well as expressive language tasks, the data suggest that the difficulty for children with SLI is in knowing when to inflect verbs for tense, rather than how to do so. This is perhaps not surprising when we consider that tense does not have a transparent semantic interpretation, but depends on complex relationships between inflections and hierarchically organized clauses. An explanation in terms of syntactic limitations contrasts with a popular morpho-phonological account, the Words and Rules model. This model, which attributes problems to difficulties with applying a rule to generate regular inflected forms, has been widely applied to adult-acquired disorders. There are striking similarities in the pattern of errors in adults with anterior aphasia and children with SLI, suggesting that impairments in appreciation of when to mark tense may apply to acquired as well as developmental disorders.  相似文献   

12.
There is now little doubt that both environmental factors and genes are likely to make important contributions to the aetiology of specific language impairment (SLI). The most commonly proposed model for understanding these influences is the multifactorial model. In the present study we examine two expectations based on this model: that there will be a systematic relationship between the severity of proband language scores and the rate and severity of SLI in relatives and that relatives will be more strongly affected if they are relatives of a proband of the more rarely affected gender (female) because the latter require a higher genetic liability to become equally impaired. Ninety-three probands and their 300 first-degree relatives participated in this study. Results showed a relationship between proband severity at age 14 and an increased rate of SLI in relatives. This relationship was strong for child siblings and was significant with respect to both rate of SLI and severity over a range of language and literacy measures. In contrast, higher levels of SLI among relatives of female rather than male probands was entirely disproved.  相似文献   

13.
Specific language impairment (SLI) is defined as an unexplained failure to acquire normal language skills despite adequate intelligence and opportunity. We have reported elsewhere a full-genome scan in 98 nuclear families affected by this disorder, with the use of three quantitative traits of language ability (the expressive and receptive tests of the Clinical Evaluation of Language Fundamentals and a test of nonsense word repetition). This screen implicated two quantitative trait loci, one on chromosome 16q (SLI1) and a second on chromosome 19q (SLI2). However, a second independent genome screen performed by another group, with the use of parametric linkage analyses in extended pedigrees, found little evidence for the involvement of either of these regions in SLI. To investigate these loci further, we have collected a second sample, consisting of 86 families (367 individuals, 174 independent sib pairs), all with probands whose language skills are 1.5 SD below the mean for their age. Haseman-Elston linkage analysis resulted in a maximum LOD score (MLS) of 2.84 on chromosome 16 and an MLS of 2.31 on chromosome 19, both of which represent significant linkage at the 2% level. Amalgamation of the wave 2 sample with the cohort used for the genome screen generated a total of 184 families (840 individuals, 393 independent sib pairs). Analysis of linkage within this pooled group strengthened the evidence for linkage at SLI1 and yielded a highly significant LOD score (MLS = 7.46, interval empirical P<.0004). Furthermore, linkage at the same locus was also demonstrated to three reading-related measures (basic reading [MLS = 1.49], spelling [MLS = 2.67], and reading comprehension [MLS = 1.99] subtests of the Wechsler Objectives Reading Dimensions).  相似文献   

14.
Specific language impairment is a neurodevelopmental disorder characterized by impairments essentially restricted to the domain of language and language learning skills. This contrasts with autism, which is a pervasive developmental disorder defined by multiple impairments in language, social reciprocity, narrow interests and/or repetitive behaviors. Genetic linkage studies and family data suggest that the two disorders may have genetic components in common. Two samples, from Canada and the US, selected for specific language impairment were genotyped at loci where such common genes are likely to reside. Significant evidence for linkage was previously observed at chromosome 13q21 in our Canadian sample (HLOD 3.56) and was confirmed in our US sample (HLOD 2.61). Using the posterior probability of linkage (PPL) to combine evidence for linkage across the two samples yielded a PPL over 92%. Two additional loci on chromosome 2 and 7 showed weak evidence for linkage. However, a marker in the cystic fibrosis transmembrane conductance regulator (7q31) showed evidence for association to SLI, confirming results from another group (O'Brien et al. 2003). Our results indicate that using samples selected for components of the autism phenotype may be a useful adjunct to autism genetics.  相似文献   

15.
Two cognitive models of inflectional morphology are widely debated in the literature—the Words and Rules model, whereby irregular forms are stored in the lexicon but regular forms are created by rule, and Single Mechanism models, whereby both regulars and irregulars form an associative network, with no rules. A newer model, the Computational Grammatical Complexity (CGC) model, recognises the contribution of hierarchical complexity in three components of the grammar, syntax, morphology and phonology, to the construction of morphologically complex forms. This model has previously been tested for regular past tense inflection in English, and in this study we test its predictions for the English irregular past tense, in four groups of children: a group with Grammatical Specific Language Impairment (G-SLI; aged 9;8–17;8), and three groups of typically developing children (aged 5;4–8;5). Children with G-SLI provide an important test case for the CGC model because they have deficits in syntax, morphology and phonology. As predicted, children with G-SLI produced fewer tense-marked irregulars than expected for their age, and fewer over-regularisations than their language-matched controls. The effect of verb-end phonology on over-regularisation and null-marking errors was the same for all groups: both G-SLI and typically developing children were more likely to over-regularise verbs ending in a vowel, and more likely to null-mark verbs ending in an alveolar consonant. We interpret these results as providing further support for the CGC model.  相似文献   

16.
Friederici AD 《Neuron》2006,52(6):941-952
The neural correlates of early language development and language impairment are described, with the adult language-related brain systems as a target model. Electrophysiological and hemodynamic studies indicate that language functions to be installed in the child's brain are similar to those of adults, with lateralization being present at birth, phonological processes during the first months, semantic processes at 12 months, and syntactic processes around 30 months. These findings support the view that the brain basis of language develops continuously over time. Discontinuities are observed in children with language impairment. Here, the observed functional abnormalities are accompanied by structural abnormalities in inferior frontal and temporal brain regions.  相似文献   

17.
Li N  Bartlett CW 《Life sciences》2012,90(13-14):469-475
Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language.  相似文献   

18.
Many children acquire language so smoothly that it appears to be an innate ability. If this is true, then it should be possible to identify genes that underlie variations in linguistic abilities.  相似文献   

19.
Specific language impairment (SLI) is a developmental language disorder that occurs for no known reason. The disorder affects 2-8% of children. Some scientific evidence suggests that genetic factors are implicated in the etiology of SLI. The disorder is genetically complex. Two novel loci, SLI1 on chromosome 16q24 (MIM 606711) and SLI2 on chromosome 19q13 (MIM 606712), have been found to be highly correlated with SLI. Four genes have been identified as susceptibility genes. SLI occurs at an unusually elevated incidence (35%) among the population of Robinson Crusoe Island (Chile), which also has a high consanguinity rate. This finding supports the influence of genetic mechanisms in the transmission of SLI based on a founder effect. To investigate further the genetic involvement in this population, we collected blood samples from 115 islanders from 13 families with a language-impaired proband and from 18 families with a normal-language proband. The analysis of micro satellite marker D16S515, located in locus SLI1, demonstrated that the 230-bp allele was correlated with SLI and that the 232-bp allele was correlated with normal language development. The domain containing the D16S515 marker, therefore, may play a role in language development.  相似文献   

20.

Background

The extraordinarily high incidence of grammatical language impairments in developmental disorders suggests that this uniquely human cognitive function is “fragile”. Yet our understanding of the neurobiology of grammatical impairments is limited. Furthermore, there is no “gold-standard” to identify grammatical impairments and routine screening is not undertaken. An accurate screening test to identify grammatical abilities would serve the research, health and education communities, further our understanding of developmental disorders, and identify children who need remediation, many of whom are currently un-diagnosed. A potential realistic screening tool that could be widely administered is the Grammar and Phonology Screening (GAPS) test – a 10 minute test that can be administered by professionals and non-professionals alike. Here we provide a further step in evaluating the validity and accuracy (sensitivity and specificity) of the GAPS test in identifying children who have Specific Language Impairment (SLI).

Methods and Findings

We tested three groups of children; two groups aged 3;6–6:6, a typically developing (n = 30) group, and a group diagnosed with SLI: (n = 11) (Young (Y)-SLI), and a further group aged 6;9–8;11 with SLI (Older (O)-SLI) (n = 10) who were above the test age norms. We employed a battery of language assessments including the GAPS test to assess the children''s language abilities. For Y-SLI children, analyses revealed a sensitivity and specificity at the 5th and 10th percentile of 1.00 and 0.98, respectively, and for O-SLI children at the 10th and 15th percentile .83 and .90, respectively.

Conclusions

The findings reveal that the GAPS is highly accurate in identifying impaired vs. non-impaired children up to 6;8 years, and has moderate-to-high accuracy up to 9 years. The results indicate that GAPS is a realistic tool for the early identification of grammatical abilities and impairment in young children. A larger investigation is warranted in children with SLI and other developmental disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号