首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell motility and invasion. The current studies evaluate the role of a cell surface chondroitin sulfate proteoglycan (CSPG) in the adhesion, motility, and invasive behavior of a highly metastatic mouse melanoma cell line (K1735 M4) on type I collagen matrices. By blocking mouse melanoma cell production of CSPG with p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside), a compound that uncouples chondroitin sulfate from CSPG core protein synthesis, we observed a corresponding decrease in melanoma cell motility on type I collagen and invasive behavior into type I collagen gels. Melanoma cell motility on type I collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG is not a primary cell adhesion receptor, but may play a role in melanoma cell motility and invasion at the level of cellular translocation. Furthermore, purified mouse melanoma cell surface CSPG was shown, by affinity chromatography and in solid phase binding assays, to bind to type I collagen and this interaction was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related CSPG and type I collagen in the ECM may play an important role in mouse melanoma cell motility and invasion, and that the chondroitin sulfate portion of the proteoglycan seems to be a critical component in mediating this effect.  相似文献   

2.
Haptokinetic cell migration across surfaces is mediated by adhesion receptors including beta1 integrins and CD44 providing adhesion to extracellular matrix (ECM) ligands such as collagen and hyaluronan (HA), respectively. Little is known, however, about how such different receptor systems synergize for cell migration through three-dimensionally (3-D) interconnected ECM ligands. In highly motile human MV3 melanoma cells, both beta1 integrins and CD44 are abundantly expressed, support migration across collagen and HA, respectively, and are deposited upon migration, whereas only beta1 integrins but not CD44 redistribute to focal adhesions. In 3-D collagen lattices in the presence or absence of HA and cross-linking chondroitin sulfate, MV3 cell migration and associated functions such as polarization and matrix reorganization were blocked by anti-beta1 and anti-alpha2 integrin mAbs, whereas mAbs blocking CD44, alpha3, alpha5, alpha6, or alphav integrins showed no effect. With use of highly sensitive time-lapse videomicroscopy and computer-assisted cell tracking techniques, promigratory functions of CD44 were excluded. 1) Addition of HA did not increase the migratory cell population or its migration velocity, 2) blocking of the HA-binding Hermes-1 epitope did not affect migration, and 3) impaired migration after blocking or activation of beta1 integrins was not restored via CD44. Because alpha2beta1-mediated migration was neither synergized nor replaced by CD44-HA interactions, we conclude that the biophysical properties of 3-D multicomponent ECM impose more restricted molecular functions of adhesion receptors, thereby differing from haptokinetic migration across surfaces.  相似文献   

3.
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.  相似文献   

4.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

5.
Invasion of the basement membrane is believed to be a critical step in the metastatic process. Melanoma cells have been shown previously to bind distinct triple-helical regions within basement membrane (type IV) collagen. Additionally, tumor cell binding sites within type IV collagen contain glycosylated hydroxylysine residues. In the present study, we have utilized triple-helical models of the type IV collagen alpha1(IV)1263-1277 sequence to (a) determine the melanoma cell receptor for this ligand and (b) analyze the results of single-site glycosylation on melanoma cell recognition. Receptor identification was achieved by a combination of methods, including (a) cell adhesion and spreading assays using triple-helical alpha1(IV)1263-1277 and an Asp(1266)Abu variant, (b) inhibition of cell adhesion and spreading assays, and (c) triple-helical alpha1(IV)1263-1277 affinity chromatography with whole cell lysates and glycosaminoglycans. Triple-helical alpha1(IV)1263-1277 was bound by melanoma cell CD44/chondroitin sulfate proteoglycan receptors and not by the collagen-binding integrins or melanoma-associated proteoglycan. Melanoma cell adhesion to and spreading on the triple-helical alpha1(IV)1263-1277 sequence was then compared for glycosylated (replacement of Lys(1265) with Hyl(O-beta-d-galactopyranosyl)) versus non-glycosylated ligand. Glycosylation was found to strongly modulate both activities, as adhesion and spreading were dramatically decreased due to the presence of galactose. CD44/chondroitin sulfate proteoglycan did not bind to glycosylated alpha1(IV)1263-1277. Overall, this study (a) is the first demonstration of the prophylactic effects of glycosylation on tumor cell interaction with the basement membrane, (b) provides a rare example of an apparent unfavorable interaction between carbohydrates, and (c) suggests that sugars may mask "cryptic sites" accessible to tumor cells with cell surface or secreted glycosidase activities.  相似文献   

6.
Release of cell fragments by invading melanoma cells   总被引:2,自引:0,他引:2  
Tumor cell invasion requires coordinated cell adhesion to an extracellular matrix (ECM) substrate at the leading edge and concomitant detachment at the cell rear. Known detachment mechanisms include the slow sliding of focal contacts, the detachment of adhesion receptors by affinity and avidity regulation, as well as the shedding of adhesion receptors, most notably integrins. In highly invasive melanoma cells migrating within 3D collagen matrices, beta1 integrins and CD44 are released upon retraction of the trailing edge, together with ripping-off complete cell fragments to become deposited along the migration trail of remodeled matrix. Cell fragments reach a size up to 12 microm in diameter, contain cytoplasm and occasionally polymerized actin enclosed by intact cell membrane including surface beta1 integrins, but do not include nuclear material. The release of cell fragments was migration dependent, as impairment of motility by a blocking anti-beta1 integrin antibody also blocked cell particle release. Invasion-associated deposition of cell fragments combines the secretory-type release of vesicles with a physical mechanism of rear retraction and migration efficiency. The deposition of cell fragments may further represent a disregulated detachment strategy with implications for neoplastic cell behavior, such as the paracrine effects on neighbor cells or a negative impact on immune effector cells.  相似文献   

7.
Melanoma chondroitin sulfate proteoglycan (MCSP) is an early cell surface melanoma progression marker implicated in stimulating tumor cell proliferation, migration, and invasion. Focal adhesion kinase (FAK) plays a pivotal role in integrating growth factor and adhesion-related signaling pathways, facilitating cell spreading and migration. Extracellular signal-regulated kinase (ERK) 1 and 2, implicated in tumor growth and survival, has also been linked to clinical melanoma progression. We have cloned the MCSP core protein and expressed it in the MCSP-negative melanoma cell line WM1552C. Expression of MCSP enhances integrin-mediated cell spreading, FAK phosphorylation, and activation of ERK1/2. MCSP transfectants exhibit extensive MCSP-rich microspikes on adherent cells, where it also colocalizes with alpha4 integrin. Enhanced activation of FAK and ERK1/2 by MCSP appears to involve independent mechanisms because inhibition of FAK activation had no effect on ERK1/2 phosphorylation. These results indicate that MCSP may facilitate primary melanoma progression by enhancing the activation of key signaling pathways important for tumor invasion and growth.  相似文献   

8.
9.
Synthetic peptide GD-2 is a sequence of amino acids derived from the carboxy-terminal long arm of the A chain of laminin. Previous studies have shown that peptide GD-2 promotes the adhesion of human squamous cell carcinoma (SCC) cells as well as a variety of other cell lines. In this study, we attempted to identify the receptor that SCC cells use to adhere to peptide GD-2. Monoclonal antibodies (mAbs) against a human SCC cell line were generated. One of these mAbs, ASC-1, bound to the surface of SCC cells as determined by flow cytometry. This mAb inhibited SCC cell adhesion to peptide GD-2 and laminin, but not fibronectin or type IV collagen, suggesting that mAb ASC-1 binds to the SCC receptor for the peptide GD-2 sequence of laminin. MAb ASC-1 immunoprecipitated a complex composed of two components of 135 and 116 kDa. Immunoadsorption of ASC-1-binding material from the SCC cell extract by incubation with mAb ASC-1 resulted in the removal of the α3β1 integrin from the extract. Immunohistochemical staining of tissue from a normal human tongue and from a patient with SCC of the tongue revealed that mAb ASC-1 stained the surface of epithelial cells that were in contact with the basement membrane, as well as those cells located two to three layers above the basement membrane. This mAb also stained blood vessels in the squamous tissue. This staining pattern was identical to that observed when the same tissues were stained by a mAb against the α3 integrin subunit. In summary, by use of a new mAb, ASC-1, that recognizes the α3β1 integrin, we have determined that the α3β1 integrin mediates SCC cell adhesion to the peptide GD-2 sequence within laminin.  相似文献   

10.
The final stage in the migration of leukocytes to sites of inflammation involves movement of leukocytes through the endothelial cell layer and the perivascular basement membrane. Both platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) and the integrin alphavbeta3 have been implicated in this process, and in vitro studies have identified alphavbeta3 as a heterotypic ligand for PECAM-1. In the present study we have addressed the roles of these molecules by investigating and comparing the effects of PECAM-1 and alphavbeta3 blockade on leukocyte migration in vivo. For this purpose we have examined the effects of neutralizing Abs directed against PECAM-1 (domain 1-specific, mAb 37) and beta3 integrins (mAbs 7E3 and F11) on leukocyte responses in the mesenteric microcirculation of anesthetized rats using intravital microscopy. The anti-PECAM-1 mAb suppressed leukocyte extravasation, but not leukocyte rolling or firm adhesion, elicited by IL-1beta in a dose-dependent manner (e.g., 67% inhibition at 10 mg/kg 37 Fab), but had no effect on FMLP-induced leukocyte responses. Analysis by electron microscopy suggested that this suppression was due to an inhibition of neutrophil migration through the endothelial cell barrier. By contrast, both anti-beta3 integrin mAbs, 7E3 F(ab')2 (5 mg/kg) and F11 F(ab')2 (5 mg/kg), selectively reduced leukocyte extravasation induced by FMLP (38 and 46%, respectively), but neither mAb had an effect on IL-1beta-induced leukocyte responses. These findings indicate roles for both PECAM-1 and beta3 integrins in leukocyte extravasation, but do not support the concept that these molecules act as counter-receptors in mediating leukocyte transmigration.  相似文献   

11.
Cell-to-cell junction structures play a key role in cell growth rate control and cell polarization. In endothelial cells (EC), these structures are also involved in regulation of vascular permeability and leukocyte extravasation. To identify novel components in EC intercellular junctions, mAbs against these cells were produced and selected using a morphological screening by immunofluorescence microscopy. Two novel mAbs, LIA1/1 and VJ1/16, specifically recognized a 25-kD protein that was selectively localized at cell–cell junctions of EC, both in the primary formation of cell monolayers and when EC reorganized in the process of wound healing. This antigen corresponded to the recently cloned platelet-endothelial tetraspan antigen CD151/PETA-3 (platelet-endothelial tetraspan antigen-3), and was consistently detected at EC cell–cell contact sites. In addition to CD151/PETA-3, two other members of the tetraspan superfamily, CD9 and CD81/ TAPA-1 (target of antiproliferative antibody-1), localized at endothelial cell-to-cell junctions. Biochemical analysis demonstrated molecular associations among tetraspan molecules themselves and those of CD151/ PETA-3 and CD9 with α3β1 integrin. Interestingly, mAbs directed to both CD151/PETA-3 and CD81/ TAPA-1 as well as mAb specific for α3 integrin, were able to inhibit the migration of ECs in the process of wound healing. The engagement of CD151/PETA-3 and CD81/TAPA-1 inhibited the movement of individual ECs, as determined by quantitative time-lapse video microscopy studies. Furthermore, mAbs against the CD151/PETA-3 molecule diminished the rate of EC invasion into collagen gels. In addition, these mAbs were able to increase the adhesion of EC to extracellular matrix proteins. Together these results indicate that CD81/TAPA-1 and CD151/PETA-3 tetraspan molecules are components of the endothelial lateral junctions implicated in the regulation of cell motility, either directly or by modulation of the function of the associated integrin heterodimers.  相似文献   

12.
Integrins from the very late activation antigen (VLA) subfamily are involved in cellular attachment to extracellular matrix (ECM) proteins and in intercellular adhesions. It is known that the interaction of integrin proteins with their ligands can be regulated during cellular activation. We have investigated the regulation of different VLA-mediated adhesive interactions through the common beta 1 chain. We have found that certain anti-beta 1 antibodies strongly enhance binding of myelomonocytic U-937 cells to fibronectin. This beta 1-mediated regulatory effect involved both VLA-4 and VLA-5 fibronectin receptors. Moreover, anti-beta 1 mAb also induced VLA-4-mediated binding to a recombinant soluble form of its endothelial cell ligand VCAM-1. Non-activated peripheral blood T lymphocytes, unable to mediate VLA-4 interactions with fibronectin or VCAM-1, acquired the ability to bind these ligands in the presence of anti-beta 1 mAb. The anti-beta 1-mediated changes in the affinities of beta 1 integrin for their ligands were comparable to those triggered by different lymphocyte activation agents such as anti-CD3 mAb or phorbol ester. Adhesion of melanoma cells to other ECM proteins such as laminin or collagen as well as that of alpha 2-transfected K-562 cells to collagen, was also strongly enhanced by anti-beta 1 mAb. These beta 1-mediated regulatory effects on different VLA-ligand interactions do not involve changes in cell surface membrane expression of different VLA heterodimers. The anti-beta 1-mediated functional effects required an active metabolism, cytoskeleton integrity and the existence of physiological levels of intracellular calcium as well as a functional Na+/H+ antiporter. Beta 1 antibodies not only increased cell attachment but also promoted spreading and cytoplasmic extension of endothelial cells on plates coated with either fibronectin, collagen, or laminin as well as induced the rapid appearance of microspikes in U-937 cells on fibronectin. Moreover, both beta 1 integrin and the cytoskeletal protein talin colocalized in the anti-beta 1 induced microspikes. These results emphasize the central role of the common beta 1 chain in regulating different adhesive functions mediated by VLA integrins as well as cellular morphology.  相似文献   

13.
Anti-FRP mAbs induced polykaryocyte formation of U2ME-7 cells (CD4+U937 cells transfected with the HIV gp160 gene). Anti-FRP-1 mAb immunoprecipitated gp80-85, gp120 and homodimers of these peptides, and anti-FRP-2 mAb reacted with gp135 identically to the alpha 3 subunit of integrin. Both anti-FRP-1 and anti-FRP-2 mAb-induced cell fusion was blocked by anti-beta 1 integrin antibody, fibronectin or inhibiting anti-FRP-1 antibody. Therefore, anti-FRP mAbs were thought to induce the fusion via an integrin system(s). FRP-mediated fusion was temperature, cytoskeleton, energy and Ca2+ dependent. These experiments showed a possible regulatory function of cell fusion by an integrin system(s).  相似文献   

14.
The cell surface glycoprotein CD44 is proposed as a main participant in cell adhesion and migration. We studied the function, expression, and distribution of CD44 in the invasive and metastatic F3II murine carcinoma cell line during adhesion, spreading, migration, and invasion. A mAb anti-CD44 (KM 201) dramatically blocked F3II cell adhesion on both plastic and hyaluronic acid coatings, as well as spreading on uncoated plastic surfaces (P< 0.01). KM201 mAb significantly inhibited F3II cell migration and invasion in Transwell chambers. Immunocytochemistry of spreading cells revealed that CD44 distributed in bands on the cell surface, particularly in the tip of leading edges and in the perinuclear zones of the cell membrane. CD44 antigen was never detected in filopodia or lamellipodia nor in focal adhesion-like structures, but was also detectable as strong interlamellar bands. Fully spread cells showed a decreased CD44 signal compared to cells in early stages of spreading. This decrease correlated with a reduced expression of CD44 as detected by Western blot. We also investigated the signals that may regulate CD44 expression in F3II cells. Treatment of F3II cells, with phorbol myristate acetate (PMA) or phosphatidic acid (PA, the product of PLD-dependent hydrolysis of phosphatidylcholine), significantly enhanced CD44 expression. Conversely, the treatment of F3II cells with H7, a specific PKC inhibitor, or propranolol, which blocks PA conversion to DAG, significantly decreased CD44 expression levels. These results suggest the involvement of PKC and PLD pathways in CD44 expression. These results demonstrate that CD44 plays an important role during F3II cells adhesion, spreading, migration, and invasion. In addition we provide information linking the PLD- and PKC-dependent pathways with the regulation of CD44 expression.  相似文献   

15.
Fu BH  Wu ZZ  Qin J 《Molecular biology reports》2011,38(5):3271-3276
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.  相似文献   

16.
We have developed two rat mAbs that recognize different subunits of the human fibroblast fibronectin receptor complex and have used them to probe the function of this cell surface heterodimer. mAb 13 recognizes the integrin class 1 beta polypeptide and mAb 16 recognizes the fibronectin receptor alpha polypeptide. We tested these mAbs for their inhibitory activities in cell adhesion, spreading, migration, and matrix assembly assays using WI38 human lung fibroblasts. mAb 13 inhibited the initial attachment as well as the spreading of WI38 cells on fibronectin and laminin substrates but not on vitronectin. Laminin-mediated adhesion was particularly sensitive to mAb 13. In contrast, mAb 16 inhibited initial cell attachment to fibronectin substrates but had no effect on attachment to either laminin or vitronectin substrates. When coated on plastic, both mAbs promoted WI38 cell spreading. However, mAb 13 (but not mAb 16) inhibited the radial outgrowth of cells from an explant on fibronectin substrates. mAb 16 also did not inhibit the motility of individual fibroblasts on fibronectin in low density culture and, in fact, substantially accelerated migration rates. In assays of the assembly of an extracellular fibronectin matrix by WI38 fibroblasts, both mAbs produced substantial inhibition in a concentration-dependent manner. The inhibition of matrix assembly resulted from impaired retention of fibronectin on the cell surface. Treatment of cells with mAb 16 also resulted in a striking redistribution of cell surface fibronectin receptors from a streak-like pattern to a relatively diffuse distribution. Concomitant morphological changes included decreases in thick microfilament bundle formation and reduced adhesive contacts of the streak-like and focal contact type. Our results indicate that the fibroblast fibronectin receptor (a) functions in initial fibroblast attachment and in certain types of adhesive contact, but not in the later steps of cell spreading; (b) is not required for fibroblast motility but instead retards migration; and (c) is critically involved in fibronectin retention and matrix assembly. These findings suggest a central role for the fibronectin receptor in regulating cell adhesion and migration.  相似文献   

17.
The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.  相似文献   

18.
19.
Tumor cell adhesion and proteolysis of the extracellular matrix proteins surrounding the cells are tightly linked processes in tumor invasion. In this study, we sought to identify components of the cell surface of a vertical growth phase melanoma cell line, WM1341D, that mediate invasive cellular behavior. We determined by antisense inhibition that melanoma chondroitin sulfate proteoglycan (MCSP) and membrane-type 3 matrix metalloproteinase (MT3-MMP) expressed on WM1341D are required for invasion of type I collagen and degradation of type I gelatin. MT3-MMP co-immunoprecipitated with MCSP in WM1341D melanoma cells cultured on type I collagen or laminin. The association between MT3-MMP and MCSP was largely disrupted by removing chondroitin sulfate glycosaminoglycan (CS) from the cell surface, suggesting CS could mediate the association between the two cell surface core proteins. Recombinant MT3-MMP and MT3-MMP from whole cell lysates of WM1341D cells were specifically eluted from CS- conjugated affinity columns. The results indicate that MT3-MMP possesses the potential to promote melanoma invasion and proteolysis and that the formation of a complex between MT3-MMP and MCSP may be a crucial step in activating these processes.  相似文献   

20.
The alpha1 beta1 integrin, an inserted (1) domain containing collagen receptor, is expressed in the cell surface membrane of normal and malignant cells, and may play a role in their migration through tissues or in metastatic spread. Here we report that a functional anti-human alpha1beta1 integrin monoclonal antibody (mAb) (1B3.1) directly and specifically binds plastic bound recombinant human alpha1 I-domain protein containing the collagen binding site. Detection was diminished by acidification of the I-domain protein but was enhanced by increasing concentrations of Mg2+ cation. Furthermore, we detected binding of the mAb to proteins from the ocular fluids of 6 patients, with the highest concentration, corresponding to 22.1 ng/ml of I-domain, found in a sample from the eye of a patient with metastatic lung adenocarcinoma. Interestingly, we found that both SKNSH neuroblastoma cells and virally transformed human T cells adhered specifically to plastic wells coated with either immobilized collagen IV or alpha1 I-domain. MAb I B3.1 inhibited adhesion to collagen IV but not to immobilized I-domain. These results suggest a novel function for cell free alpha1 I-domain as a substrate for cellular adhesion, which may have relevance in tumor spread in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号