首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
RCA I-binding patterns of the Golgi apparatus   总被引:2,自引:0,他引:2  
The distribution in the Golgi apparatus of binding sites for the galactose-specific Ricinus communis I lectin (RCA I) was studied in differently specialized cells, including goblet cells and absorptive enterocytes of the rat small intestine as well as acinar cells of the rat embryonic pancreas and submandibular gland. For the purpose of localizing the binding reactions, a pre-embedment method using horseradish peroxidase for electron microscopic visualization, and a post-embedding technique making use of the colloidal gold system were employed. The reactions obtained, localizing cell constituents which contain saccharides with terminal or internal beta-D-galactosyl residues, labeled diverse Golgi subcompartments. The goblet cells showed intense RCA I staining of the cisternae of the trans side of the Golgi stacks. The reaction was weak in the medial cisternae and the cis side of the stacks mostly was devoid of label. In the absorptive cells, in addition to the RCA I reaction of trans Golgi elements, binding sites for this lectin were concentrated in the stacks' medial section. In the embryonic acinar cells, accessible galactosyl residues were either confined to the trans and/or medial cisternae, or distributed across elements of all the stacked saccules. In the latter stacks, the reactions mostly were weak in the cis cisternae and increased in intensity towards the trans side. As regards the respective labeling patterns, similar percentages were calculated for the early and late stages of development: they were approximately 62% for the pattern which showed RCA I label limited to trans/medial cisternae and approximately 38% for the "cis-to-trans"-distributed RCA I reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have determined the subcellular distribution of fucosyl residues in rat duodenal absorptive enterocytes and goblet cells, using the binding affinity of the lectin I of Ulex europaeus (UEA I). In absorptive enterocytes, UEA I-lectin gold complexes were detected at the brush border and at the basolateral plasma membrane; pits of the plasma membrane were labeled, as were small vesicles, multivesicular bodies, lysosomes, and the Golgi apparatus. In the Golgi stacks, about half of the cisternae showed gold marker particles: accessible fucosyl residues were sparse in the cis subcompartment, the cismost cisterna mostly remaining negative; more intense label was found in medial cisternae; reactions were concentrated in the trans and transmost Golgi subcompartments. Cisternae, tubules and vesicles located at the trans Golgi side were the most constantly and intensely stained Golgi elements. In goblet cells, mucin granules and trans Golgi cisternae were labeled. Rarely, UEA I-gold bound to cisternae of the medial subcompartment; the cis subcompartment remained unstained. In part, UEA I-gold particles were restricted to dilated portions of the transmost Golgi cisterna and to secretory granules.  相似文献   

3.
Thin, frozen sections of a HeLa cell line were double labeled with specific antibodies to localize the trans-Golgi enzyme, beta 1,4 galactosyltransferase (GalT) and the medial enzyme, N- acetylglucosaminyltransferase I (NAGT I). The latter was detected by generating a HeLa cell line stably expressing a myc-tagged version of the endogenous protein. GalT was found in the trans-cisterna and trans- Golgi network but, contrary to expectation, NAGT I was found both in the medial- and trans-cisternae, overlapping the distribution of GalT. About one third of the NAGT I and half of the GalT were found in the shared, trans-cisterna. These data show that the differences between cisternae are determined not by different sets of enzymes but by different mixtures.  相似文献   

4.
The O-linked oligosaccharides of mucin-type glycoproteins contain N- acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicryl K4M embedded duodenum or colon were incubated with Helix pomatia lectin- gold complexes, no labeling could be detected over the cisternal space of the nuclear envelope and the rough endoplasmic reticulum. A uniform labeling was observed over the first and several subsequent cis Golgi cisternae and over the last (duodenal goblet cells) or the two last (colonic goblet cells) trans Golgi cisternae as well as forming and mature mucin droplets. However, essentially no labeling was detected over several cisternae in the central (medial) region of the Golgi apparatus. The results strongly suggest that core O-glycosylation takes place in cis Golgi cisternae but not in the rough endoplasmic reticulum. The heterogenous labeling for GalNAc residues in the Golgi apparatus is taken as evidence that termination of certain O- oligosaccharide chains by GalNAc occurs in trans Golgi cisternae.  相似文献   

5.
《The Journal of cell biology》1983,97(4):1243-1248
We investigated the subcellular sites of glycoprotein oligosaccharide maturation by using lectin conjugates to stain lightly-fixed, saponin- permeabilized myeloma cells. At the electron microscopic level, concanavalin A-peroxidase stains the cisternal space of the nuclear envelope, the rough endoplasmic reticulum, and cisternae along the proximal face of the Golgi stack. Conversely, wheat germ agglutinin- peroxidase stains cisternae along the distal face of the Golgi stack, associated vesicles, and the cell surface. These observations confirm the existence of two qualitatively distinct Golgi subcompartments, show that the lectin conjugates can be employed as relatively proximal or distal Golgi markers under conditions of excellent ultrastructural preservation, suggest that the asymmetric distribution of qualitatively distinct oligosaccharides is a property of underlying cellular components and not simply of the principal secretory product, and suggest that the oligosaccharide structure recognized by wheat germ agglutinin is attained during transport from the proximal toward the distal face of the Golgi stack.  相似文献   

6.
In the accompanying paper (Griffiths, G., P. Quinn, and G. Warren, 1983, J. Cell Biol., 96:835-850), we suggested that the Golgi stack could be divided into functionally distinct cis, medial, and trans compartments, each comprising one or two adjacent cisternae. These compartments were identified using Baby hamster kidney (BHK) cells infected with Semliki Forest virus (SFV) and treated with monensin. This drug blocked intracellular transport but not synthesis of the viral membrane proteins that were shown to accumulate in the medial cisternae. In consequence, these cisternae bound nucleocapsids. Here we show that this binding markedly increased the density of the medial cisternae and allowed us to separate them from cis and trans Golgi cisternae. A number of criteria were used to show that the intracellular capsid-binding membranes (ICBMs) observed in vivo were the same as those membranes sedimenting to a higher density in sucrose gradients in vitro, and this separation of cisternae was then used to investigate the distribution, within the Golgi stack, of some specific Golgi functions. After labeling for 2.5 min with [3H]palmitate, most of the fatty acid attached to viral membrane proteins was found in the ICBM fraction. Because the viral membrane proteins appear to move from cis to trans, this suggests that fatty acylation occurs in the cis or medial Golgi cisternae. In contrast, the distribution of alpha 1-2- mannosidase, an enzyme involved in trimming high-mannose oligosaccharides, and of galactosyl transferase, which is involved in the construction of complex oligosaccharides, was not affected by monensin treatment. Together with data in the accompanying paper, this would restrict these two Golgi functions to the trans cisternae. Our data strongly support the view that Golgi functions have specific and discrete locations within the Golgi stack.  相似文献   

7.
Reichner  JS; Helgemo  SL; Hart  GW 《Glycobiology》1998,8(12):1173-1182
The ability of particular cell surface glycoproteins to recycle and become exposed to individual Golgi enzymes has been demonstrated. This study was designed to determine whether endocytic trafficking includes significant reentry into the overall oligosaccharide processing pathway. The Lec1 mutant of Chinese hamster ovary (CHO) cells lack N - acetylglucosaminyltransferase I (GlcNAc-TI) activity resulting in surface expression of incompletely processed Man5GlcNAc2 N -linked oligosaccharides. An oligosaccharide tracer was created by exoglycosylation of cell surface glycoproteins with purified porcine GlcNAc-TI and UDP-[3H]GlcNAc. Upon reculturing, all cell surface glycoproteins that acquired [3H]GlcNAc were acted upon by intracellular mannosidase II, the next enzyme in the Golgi processing pathway of complex N -linked oligosaccharides (t1/2= 3-4 h). That all radiolabeled cell surface glycoproteins were included in this endocytic pathway indicates a common intracellular compartment into which endocytosed cell surface glycoproteins return. Significantly, no evidence was found for continued oligosaccharide processing consistent with transit through the latter cisternae of the Golgi apparatus. These data indicate that, although recycling plasma membrane glycoproteins can be reexposed to individual Golgi-derived enzymes, significant reentry into the overall contiguous processing pathway is not evident.   相似文献   

8.
Frozen, thin sections of baby hamster kidney (BHK) cells were incubated with either concanavalin A (Con A) or Ricinus communis agglutinin I (RCA) to localize specific oligosaccharide moieties in endoplasmic reticulum (ER) and Golgi membranes. These lectins were then visualized using an anti-lectin antibody followed by protein A conjugated to colloidal gold. All Golgi cisternae and all ER membranes were uniformly labeled by Con A. In contrast, RCA gave a uniform labeling of only half to three-quarters of those cisternae on the trans side of the Golgi stack; one or two cis Golgi cisternae and all ER membranes were essentially unlabeled. This pattern of lectin labeling was not affected by infection of the cells with Semliki Forest virus (SFV). Infected cells transport only viral spike glycoproteins from their site of synthesis in the ER to the cell surface via the stacks of Golgi cisternae where many of the simple oligosaccharids on the spike proteins are converted to complex ones (Green, J., G. Griffiths, D. Louvard, P. Quinn, and G. Warren. 1981. J. Mol. Biol. 152:663-698). It is these complex oligosaccharides that were shown, by immunoblotting experiments, to be specifically recognized by RCA. Loss of spike proteins from Golgi cisternae after cycloheximide treatment (Green et al.) was accompanied by a 50% decrease in the level of RCA binding. Hence, about half of the RCA bound to Golgi membranes in thin sections was bound to spike proteins bearing complex oligosaccharides and these were restricted to the trans part of the Golgi stack. Our results strongly suggest that complex oligosaccharides are constructed in trans Golgi cisternae and that the overall movement of spike proteins is from the cis to the trans side of the Golgi stack.  相似文献   

9.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

10.
The budding yeast Pichia pastoris contains ordered Golgi stacks next to discrete transitional endoplasmic reticulum (tER) sites, making this organism ideal for structure-function studies of the secretory pathway. Here, we have used P. pastoris to test various models for Golgi trafficking. The experimental approach was to analyze P. pastoris tER-Golgi units by using cryofixed and freeze-substituted cells for electron microscope tomography, immunoelectron microscopy, and serial thin section analysis of entire cells. We find that tER sites and the adjacent Golgi stacks are enclosed in a ribosome-excluding "matrix." Each stack contains three to four cisternae, which can be classified as cis, medial, trans, or trans-Golgi network (TGN). No membrane continuities between compartments were detected. This work provides three major new insights. First, two types of transport vesicles accumulate at the tER-Golgi interface. Morphological analysis indicates that the center of the tER-Golgi interface contains COPII vesicles, whereas the periphery contains COPI vesicles. Second, fenestrae are absent from cis cisternae, but are present in medial through TGN cisternae. The number and distribution of the fenestrae suggest that they form at the edges of the medial cisternae and then migrate inward. Third, intact TGN cisternae apparently peel off from the Golgi stacks and persist for some time in the cytosol, and these "free-floating" TGN cisternae produce clathrin-coated vesicles. These observations are most readily explained by assuming that Golgi cisternae form at the cis face of the stack, progressively mature, and ultimately dissociate from the trans face of the stack.  相似文献   

11.
Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternae of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

12.
W G Dunphy  R Brands  J E Rothman 《Cell》1985,40(2):463-472
Using monoclonal antibodies and electron microscopy, we have localized N-acetylglucosamine transferase I within the Golgi apparatus. This enzyme initiates the conversion of asparagine-linked oligosaccharides to the complex type. We have found that the enzyme is concentrated in the central (or medial) cisternae of the Golgi stack. Cisternae at the cis and trans ends of the Golgi complex appear to lack this protein. These experiments establish a function for the medial portion of the Golgi and imply that the Golgi is partitioned into at least three biochemically and morphologically distinct cisternal compartments.  相似文献   

13.
The reaction patterns of the Golgi apparatus following staining with the lectins concanavalin A (ConA), Ricinus communis I agglutinin (RCA I), and Helix pomatia lectin (HPA) were studied in the pancreas acinar cells of rat embryos in the course of cell differentiation from day 13 through day 20 of gestation. The binding reactions were localized by means of pre-embedment incubation of 10-microns-thick cryosections of pancreas tissue, prefixed in a mixture of 4% formaldehyde/0.5% glutaraldehyde, using horseradish peroxidase for electron microscope visualization. ConA, which preferentially binds to alpha-D-mannosyl residues, consistently stained the cisternae of the cis Golgi side. The majority of the stacks also showed ConA staining of medial cisternae. The reaction of the trans side was variable; in each stage of development, the cisternae of the trans Golgi side either were devoid of labeling or appeared intensely stained. The reactions obtained with RCA I, which recognizes terminal beta-D-galactosyl residues, changed in the course of cell differentiation; in the protodifferentiated and early differentiated states, the system of "rigid lamellae," located at the trans side of the Golgi stacks, was intensely labeled, but became unreactive after production of secretion granules had started, the reaction then being restricted to the stacked saccules. In regard to the Golgi stacks in each of the developmental stages, RCA I binding sites either were confined to the trans cisternae, or, in addition, were found distributed across elements of the medial and cis compartments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Chromogranin B and secretogranin II, two members of the granin family, are known to be post-translationally modified by the addition of O-linked carbohydrates to serine and/or threonine, phosphate to serine and threonine, and sulfate to carbohydrate and tyrosine residues. In the present study, chromogranin B and secretogranin II were used as model proteins to investigate in which subcompartment of the Golgi complex secretory proteins become phosphorylated. Monensin, a drug known to block the transport from the medial to the trans cisternae of the Golgi stack, inhibited the phosphorylation of the granins, indicating that this modification occurred distal to the medial Golgi. Monensin also blocked the addition of galactose to O-linked carbohydrates and the sulfation of the granins, confirming previous data that these modifications take place in the trans Golgi. To distinguish, within the trans Golgi, between the trans cisternae of the Golgi stack and the trans Golgi network, we made use of the previous observation that brefeldin A results in the redistribution to the endoplasmic reticulum of membrane-bound enzymes of the trans cisternae of the Golgi stack, but not of the trans Golgi network. Brefeldin A treatment abolished granin sulfation but resulted in the accumulation of phosphorylated and galactosylated granins. Differential effects of brefeldin A on membranes of the Golgi stack versus the trans Golgi network were also observed by immunofluorescence analysis of marker proteins specific for either compartment. Our results suggest that the phosphorylation of secretory proteins, like their galactosylation, largely occurs in the trans cisternae of the Golgi stack, whereas the sulfation of secretory proteins on both carbohydrate and tyrosine residues takes place selectively in the trans Golgi network.  相似文献   

15.
Incubating cells at 20 degrees C blocks transport out of the Golgi complex and amplifies the exit compartments. We have used the 20 degrees C block, followed by EM tomography and serial section reconstruction, to study the structure of Golgi exit sites in NRK cells. The dominant feature of Golgi structure in temperature-blocked cells is the presence of large bulging domains on the three trans-most cisternae. These domains extend laterally from the stack and are continuous with "cisternal" domains that maintain normal thickness and alignment with the other stacked Golgi cisternae. The bulging domains do not resemble the perpendicularly extending tubules associated with the trans-cisternae of control cells. Such tubules are completely absent in temperature-blocked cells. The three cisternae with bulging domains can be identified as trans by their association with specialized ER and the presence of clathrin-coated buds on the trans-most cisterna only. Immunogold labeling and immunoblots show a significant degradation of a medial- and a trans-Golgi marker with no evidence for their redistribution within the Golgi or to other organelles. These data suggest that exit from the Golgi occurs directly from three trans-cisternae and that specialized ER plays a significant role in trans-Golgi function.  相似文献   

16.
Two terminal glycosyltransferases, a sialyltransferase and the blood group A alpha 1,3 N-acetylgalactosaminyltransferase, were found to exhibit differential subcompartmentation in the Golgi apparatus of intestinal goblet and absorptive cells. As expected from their role in terminal glycosylation, the two glycosyltransferases and their products, sialic acid residues and blood group A substance, were localized in the trans cisternae of the Golgi apparatus of goblet cells. In contrast, however, they were found throughout the Golgi apparatus stack of adjacent absorptive cells, with the exception of the fenestrated first cis cisterna. The results are in contrast to the general view that enzymes in the glycosylation pathway are arranged in a cis to trans gradient across the Golgi apparatus and that such polarized distributions may instead be cell type-specific.  相似文献   

17.
A central feature of cisternal progression/maturation models for anterograde transport across the Golgi stack is the requirement that the entire population of steady-state residents of this organelle be continuously transported backward to earlier cisternae to avoid loss of these residents as the membrane of the oldest (trans-most) cisterna departs the stack. For this to occur, resident proteins must be packaged into retrograde-directed transport vesicles, and to occur at the rate of anterograde transport, resident proteins must be present in vesicles at a higher concentration than in cisternal membranes. We have tested this prediction by localizing two steady-state residents of medial Golgi cisternae (mannosidase II and N-acetylglucosaminyl transferase I) at the electron microscopic level in intact cells. In both cases, these abundant cisternal constituents were strongly excluded from buds and vesicles. This result suggests that cisternal progression takes place substantially more slowly than most protein transport and therefore is unlikely to be the predominant mechanism of anterograde movement.  相似文献   

18.
The Golgi apparatus is enriched in specific enzymes involved in the maturation of carbohydrates of glycoproteins. Among them, alpha-mannosidases IA, IB and II are type II transmembrane Golgi-resident enzymes that remove mannose residues at different stages of N-glycan maturation. alpha-Mannosidases IA and IB trim Man9GlcNAc2 to Man5GlcNAc2, while alpha-mannosidase II acts after GlcNAc transferase I to remove two mannose residues from GlcNAcMan5GlcNAc2 to form GlcNAcMan3GlcNAc2 prior to extension into complex N-glycans by Golgi glycosyltransferases. The objective of this study is to examine the expression as well as the subcellular localization of these Golgi enzymes in the various cells of the male rat reproductive system. Our results show distinct cell-and region-specific expression of the three mannosidases examined. In the testis, only alpha-mannosidase IA and II were detectable in the Golgi apparatus of Sertoli and Leydig cells, and while alpha-mannosidase IB was present in the Golgi apparatus of all germ cells, only the Golgi apparatus of steps 1-7 spermatids was reactive for alpha-mannosidase IA. In the epididymis, principal cells were unreactive for alpha-mannosidase II, but they expressed alpha-mannosidase IB in the initial segment and caput regions, and alpha-mannosidase IA in the corpus and cauda regions. Clear cells expressed alpha-mannosidase II in all epididymal regions, and alpha-mannosidase IB only in the caput and corpus regions. Ultrastructurally, alpha-mannosidase IB was localized mainly over cis saccules, alpha-mannosidase IA was distributed mainly over trans saccules, and alpha-mannosidase II was localized mainly over medial saccules of the Golgi stack. Thus, the cell-specific expression and distinct Golgi subcompartmental localization suggest that these three alpha-mannosidases play different roles during N-glycan maturation.  相似文献   

19.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

20.
Summary A conjugate of peanut lectin with horseradish peroxidase (PL-HRP) has been employed for ultrastructural localization of glycoprotein with presumed terminal galactose residues in mouse alimentary epithelial cells. The PL-HRP conjugate imparted electron opacity in sites that stain at the light microscopic level, as for example, Golgi cisternae in surface epithelial cells of the stomach and in superficial and deep crypt cells and goblet cells of the large intestine. Ultrastructural staining revealed that Golgi cisternae intermediate between the trans and cis faces stained selectively in these sites. Secretion stored in secretory granules or Golgi vesicles in the cells lacked affinity for PL-HRP conjugate, however. Selective staining of intermediate Golgi cisternae in cells with unreactive secretory product is interpreted as indicating the site of galactosyl transferase activity and a location where glactose occurs transitorily as the terminal sugar in the glycoprotein side chains. The luminal aspect of the surface epithelial cells in the stomach and columnar cells in the colon also stained, but with some variability. Staining of these surfaces was considered possibly attributable to PL affinity of some of the secretory glycoprotein which, after absorbing to the cell surface, lost terminal sialic acid through action of luminal enzyme. PL-HRP conjugate stained granules in pancreatic zymogen cells near the block surface but not in other cells, presumably because of limited penetration of reagent. Secretion on the surface of pancreatic acinar cells or in the lumen also exhibited affinity for PL-HRP complex as did the luminal surface of gastric chief cells. Staining of secretion in the pancreatic zymogen cells and gastric chief cells for galactose appeared inconsistent with lack of evidence for presence of glycoprotein in these sites which failed to stain with the periodic acid-Schiff or periodic acid-thiocarbohydrazide-silver proteinate methods for demonstrating glycoprotein at the light and electron microscopic levels. This discrepancy points to possible selective binding of PL-HRP conjugate to a moiety other than terminal galactose of glycoprotein in a few histologic sites. These results demonstrate the applicability of the PL-HRP technique at the ultrastructural level and provide information concerning the chemical structure of epithelial cell glycoproteins and their biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号