首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Li X  Sun H  Ye Y  Chen F  Pan Y 《Steroids》2006,71(1):61-66
Two new C21 steroidal glycosides, chekiangensosides A and B, were isolated from the roots of Cynanchum chekiangense, together with two known compounds. On the basis of chemical evidence and extensive spectroscopic methods, including one-dimensional and two-dimensional NMR, the structures of two new compounds were identified as cynajapogenin A, 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-cymaropyranosyl-(1-->4)-alpha-L-cymaropyranosyl-(1-->4)-beta-D-cymaropyranoside, and glaucogenin A, 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-cymaropyranosyl-(1-->4)-alpha-L-cymaropyranosyl-(1-->4)-beta-D-cymaropyranoside, respectively. The two known steroidal glycosides, and were revised. These isolated compounds were tested for their immunological activities in vitro against concanavalin A (Con A)- and lipopolysaccharide (LPS)-induced proliferation of mice splenocytes. Compounds showed immunosuppressive activities in vitro in a dose-dependent manner.  相似文献   

2.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

3.
Mitogen-activated protein kinase kinase 1 (MAP2K1/MEK1) as well as Yes-associated protein (YAP), the downstream effector of Hippo signaling pathway, is linked to hepatocarcinogenesis. However, little is known about whether and how MEK1 interacts with YAP. In this study, we find that MEK1-YAP interaction is critical for liver cancer cell proliferation and maintenance of transformed phenotypes both in vitro and in vivo. Moreover, MEK1 and YAP proteins are closely correlated in human liver cancer samples. Mechanistically, inhibition of MEK1 by both PD98059 and U0126 as well as RNAi reduces beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC), which acts as a potential endogenous YAP protector.  相似文献   

4.
Triterpenoids are known to induce apoptosis and to be anti-tumoural. Maslinic acid, a pentacyclic triterpene, is present in high concentrations in olive pomace. This study examines the response of HT29 and Caco-2 colon-cancer cell lines to maslinic-acid treatment. At concentrations inhibiting cell growth by 50-80% (IC50HT29=61+/-1 microM, IC80HT29=76+/-1 microM and IC50Caco-2=85+/-5 microM, IC80Caco-2=116+/-5 microM), maslinic acid induced strong G0/G1 cell-cycle arrest and DNA fragmentation, and increased caspase-3 activity. However, maslinic acid did not alter the cell cycle or induce apoptosis in the non-tumoural intestine cell lines IEC-6 and IEC-18. Moreover, maslinic acid induced cell differentiation in colon adenocarcinoma cells. These findings support a role for maslinic acid as a tumour suppressant and as a possible new therapeutic tool for aberrant cell proliferation in the colon. In this report, we demonstrate for the first time that, in tumoural cancer cells, maslinic acid exerts a significant anti-proliferation effect by inducing an apoptotic process characterized by caspase-3 activation by a p53-independent mechanism, which occurs via mitochondrial disturbances and cytochrome c release.  相似文献   

5.
6.
Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1; and knockdown of p27kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.  相似文献   

7.
8.
9.
Jang JH  Kim MY  Lee JW  Kim SC  Cho JH 《Peptides》2011,32(5):895-899
Buforin IIb is a novel cell-penetrating anticancer peptide derived from histone H2A. In this study, we enhanced the cancer targeting specificity of buforin IIb using a tumor-associated enzyme-controlled activation strategy. Buforin IIb was fused with an anionic peptide (modified magainin intervening sequence, MMIS), which neutralizes the positive charge of buforin IIb and thus renders it inactive, via a matrix metalloproteinases (MMPs)-cleavable linker. The resulting MMIS:buforin IIb fusion peptide was completely inactive against MMPs-nonproducing cells. However, when the fusion peptide was administrated to MMPs-producing cancer cells, it regained the killing activity by releasing free buforin IIb through MMPs-mediated cleavage. Moreover, the activity of the fusion peptide toward MMPs-producing cancer cells was significantly decreased when the cells were pretreated with a MMP inhibitor. Taken together, these data indicate that the cancer targeting specificity of MMIS:buforin IIb is enhanced compared to the parent peptide by reactivation at the specialized areas where MMPs are pathologically produced.  相似文献   

10.
The thioredoxin system, composed of thioredoxin (Trx) and thioredoxin reductase (TrxR), emerges as one of the most important thiol-based systems involved in the maintenance of the cellular redox balance. Thioredoxin-like-1 (TXL-1) is a highly conserved protein comprising an N-terminal Trx domain and a C-terminal domain of unknown function. Here we show that TXL-1 is a substrate for the cytosolic selenoprotein TrxR-1. In situ hybridization experiments demonstrates high expression of Txl-1 mRNA in various areas of central nervous system and also in some reproductive organs. Glucose deprivation, but not hydrogen peroxide treatment, reduced the levels of endogenous TXL-1 protein in HEK-293 cell line. Conversely, overexpression of TXL-1 protects against glucose deprivation-induced cytotoxicity. Taken together, the finding that Txl-1 mRNA is highly expressed in tissues which use glucose as a primary energy source and the modulation of TXL-1 levels upon glucose deprivation indicate that TXL-1 might be involved in the cellular response to sugar starvation stress.  相似文献   

11.
Chalcones are precursors of flavonoids and have been shown to have anti-cancer activity. Here, we identify the synthetic chalcone derivative 4′-acetoamido-4-hydroxychalcone (AHC) as a potential therapeutic agent for the treatment of glioma. Treatment with AHC reduced glioma cell invasion, migration, and colony formation in a concentration-dependent manner. In addition, AHC inhibited vascular endothelial growth factor-induced migration, invasion, and tube formation in HUVECs. To determine the mechanism underlying the inhibitory effect of AHC on glioma cell invasion and migration, we investigated the effect of AHC on the gene expression change and found that AHC affects actin dynamics in U87MG glioma cells. In actin cytoskeleton regulating system, AHC increased tropomyosin expression and stress fiber formation, probably through activation of PKA. Suppression of tropomyosin expression by siRNA or treatment with the PKA inhibitor H89 reduced the inhibitory effects of AHC on glioma cell invasion and migration. In vivo experiments also showed that AHC inhibited tumor growth in a xenograft mouse tumor model. Together, these data suggest that the synthetic chalcone derivative AHC has potent anti-cancer activity through inhibition of glioma proliferation, invasion, and angiogenesis and is therefore a potential chemotherapeutic candidate for the treatment of glioma.  相似文献   

12.
Liu Y  Templeton DM 《FEBS letters》2007,581(7):1481-1486
Cadmium is a toxic metal that initiates both mitogenic responses and cell death. We show that Cd(2+) increases phosphorylation and activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) in mesangial cells, in a concentration-dependent manner. Activation is biphasic with peaks at 1-5 min and 4-6 h. Cadmium also activates Erk, but this appears to be independent of CaMK-II. At 10-20 microM, Cd(2+) initiates apoptosis in 25-55% of mesangial cells by 6h. Inhibition of CaMK-II, but not of Erk, suppresses Cd(2+)-induced apoptosis. We conclude that activation of CaMK-II by Cd(2+) contributes to apoptotic cell death, independent of Erk activation.  相似文献   

13.
14.
The goal of the current study, conducted in freshly isolated thymocytes was (1) to investigate the possibility that the activation of poly(ADP-ribose) polymerase-1 (PARP-1) in an intact cell can be regulated by protein kinase C (PKC) mediated phosphorylation and (2) to examine the consequence of this regulatory mechanism in the context of cell death induced by the genotoxic agent. In cells stimulated by the PKC activating phorbol esters, DNA breakage was unaffected, PARP-1 was phosphorylated, 1-methyl-3-nitro-1-nitrosoguanidine-induced PARP activation and cell necrosis were suppressed, with all these effects attenuated by the PKC inhibitors GF109203X or G?6976. Inhibition of cellular PARP activity by PKC-mediated phosphorylation may provide a plausible mechanism for the previously observed cytoprotective effects of PKC activators.  相似文献   

15.
Reactive oxygen species (ROS) is generated by oxidative stress and plays an important role in various cardiac pathologies. The SIRT1 signaling pathway and mitochondrial biogenesis play essential roles in mediating the production of ROS. SIRT1 activated by resveratrol protects cardiomyocytes from oxidative stress, but the exact mechanisms by which SIRT1 prevents oxidative stress, and its relationship with mitochondrial biogenesis, remain unclear. In this study, it was observed that after stimulation with 50 μM H2O2 for 6 h, H9C2 cells produced excessive ROS and downregulated SIRT1. The mitochondrial protein NDUFA13 was also downregulated by ROS mediated by SIRT1. Resveratrol induced the expression of SIRT1 and mitochondrial genes NDUFA1, NDUFA2, NDUFA13 and Mn-SOD. However, the production of these genes was reversed by SIRT1 inhibitor nicotinamide. These results suggest that resveratrol inhibits ROS generation in cardiomyocytes via SIRT1 and mitochondrial biogenesis signaling pathways.  相似文献   

16.
The potential usefulness of antimicrobial peptides (AMPs) as antimycobacterial compounds has not been extensively explored. Although a myriad of studies on AMPs from different sources have been done, some of its mechanisms of action are still unknown. Maganins are of particular interest since they do not lyse non-dividing mammalian cells. In this work, AMPs with well-recognized activity against bacteria were synthesized, characterized, purified and their antimycobacterial activity and influence on ATPase activity in mycobacterial plasma membrane vesicles were assessed. Using bioinformatics tools, a magainin-I analog peptide (MIAP) with improved antimicrobial activity was designed. The influence of MIAP on proton (H(+)) pumping mediated by F(1)F(0)-ATPase in plasma membrane vesicles obtained from Mycobacterium tuberculosis was evaluated. We observed that the antimycobacterial activity of AMPs was low and variable. However, the activity of the designed peptide MIAP against M. tuberculosis was 2-fold higher in comparison to magainin-I. The basal ATPase activity of mycobacterial plasma membrane vesicles decreased approximately 24-30% in the presence of AMPs. On the other hand, the MIAP peptide completely abolished the F(1)F(0)-ATPase activity involved in H(+) pumping across M. tuberculosis plasma membranes vesicles at levels similar to the specific inhibitor N,N' dicyclohexylcarbodiimide. These finding suggest that AMPs can inhibit the H(+) pumping F(1)F(0)-ATPase of mycobacterial plasma membrane that potentially interferes the internal pH and viability of mycobacteria.  相似文献   

17.

Background

Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the biosynthesis of cholesterol and in the post-translational modification of signaling proteins. It has been reported that non-bisphosphonate FPPS inhibitors targeting its allosteric binding pocket are potentially important for the development of promising anti-cancer drugs.

Methods

The following methods were used: organic syntheses of non-bisphosphonate quinoline derivatives, enzyme inhibition studies, fluorescence titration assays, synergistic effect studies of quinoline derivatives with zoledronate, ITC studies for the binding of FPPS with quinoline derivatives, NMR-based HAP binding assays, molecular modeling studies, fluorescence imaging assay and MTT assays.

Results

We report our syntheses of a series of quinoline derivatives as new FPPS inhibitors possibly targeting the allosteric site of the enzyme. Compound 6b showed potent inhibition to FPPS without significant hydroxyapatite binding affinity. The compound showed synergistic inhibitory effect with active-site inhibitor zoledronate. ITC experiment confirmed the good binding effect of compound 6b to FPPS, and further indicated the binding ratio of 1:1. Molecular modeling studies showed that 6b could possibly bind to the allosteric binding pocket of the enzyme. The fluorescence microscopy indicated that these compounds could get into cancer cells.

Conclusions

Our results showed that quinoline derivative 6b could become a new lead compound for further optimization for cancer treatment.

General significance

The traditional FPPS active-site inhibitors bisphosphonates show poor membrane permeability to tumor cells, due to their strong polarity. The development of new non-bisphosphonate FPPS inhibitors with good cell membrane permeability is potentially important.  相似文献   

18.
Sun D  Ren Z  Zeng X  You Y  Pan W  Zhou M  Wang L  Xu A 《Peptides》2011,32(2):300-305
A novel conotoxin lt14a containing 13 amino acid residues with an amidated C-terminus derived from Conus litteratus, belongs to C-C-C-C cysteine pattern. As the smallest peptide of conotoxin framework 14, lt14a could inhibit nicotinic acetylcholine receptor and suppress pain. To elucidate structure-function relationship, we determine the solution structure by NMR and find that lt14a comprises a short duple β-strand region and β-turn motif. An analog [K7A]-lt14a of Ala substitution for Lys in position 7 is designed. Interestingly, [K7A]-lt14a exhibits higher activity than lt14a as long-lasting analgesic in the hotplate pain model in mice. Additionally, MTT assay reveals that the two peptides have low toxicity to human cells. The studies suggest that positively charged residue may not be involved in the blocking mechanism. However, due to the Ala substitution, hydrophobic residues’ patch expansion strengthens the binding ability. A hypothesis is given that in conotoxin lt14a, hydrophobic residues rather than charged residues play a key role during target binding.  相似文献   

19.
Based on our previous research, four sulfated polysaccharide (sPSs) from Tremella and Condonpsis pilosula, sTPStp, sTPS70c, sCPPStp and sCPPS50c, were prepared and their effects on splenic lymphocytes proliferation in vitro and the immune response of ND vaccine in chicken were compared taking the unmodified polysaccharide (uPS) TPStp as control. The results showed that four sPSs could significantly or numerically stimulate splenic lymphocyte proliferation singly or synergistically with LPS in vitro, sTPS70c and sCPPStp demonstrated better effect; promote peripheral lymphocytes proliferation and enhance serum HI antibody titer in chickens vaccinated with ND vaccine, the actions of sPSs were stronger than that of uPS, and sTPS70c at medium dosage presented the best efficacy. These indicated that sulfation modification could improve the immune-enhancing activity of TPS and CPPS, sTPS70c possessed the strongest activity and would be expected as a component of new-type immunopotentiator.  相似文献   

20.
Leng B  Liu XD  Chen QX 《FEBS letters》2005,579(5):1187-1190
An anti-cancer peptide was purified from the Mercenaria (Meretrix meretrix Linnaeus) by the method of chromatography on Sephadex G-25 and FPLC, and its molecular weight was determined to be 3147 Da by the way of MALDI-TOF mass spectrum. The effects of this peptide on human gastric gland carcinoma cells (BGC-823) and their cytoskeletal morphology were investigated. The results showed that the peptide could inhibit the proliferation of BGC-823 cells and obviously destroy the skeletal structures of the cells. When the concentration of the peptide reached 4.0 microg/ml, the inhibition percentage of the cell growth was about 60%. The effects of this anticancer peptide on the activities of superoxide dismutase (SOD), alkaline phosphatase (ALP) and tyrosinase were studied. The results showed that the peptide activated ALP and SOD, but inhibit the tyrosinase activity. When the concentration of the peptide reached to 0.5 microg/ml, the relative activities of SOD, ALP and tyrosinase were determined to be 188.5%, 122.0% and 27.5%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号