首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since some of the conserved antigens between man and phylogenetically lower primate species may be more immunodominant on lymphocytes of the lower primate species, we reasoned that immunization of mice with lymphocytes from lower primates might prove a useful strategy for developing monoclonal antibodies which recognize functionally important structures on both human and nonhuman primate lymphocytes. In employing this approach for the development of monoclonal antibodies, we have developed the antibody anti-2H4 which recognizes a structure on both T on non-T mononuclear cells of a wide array of primate species. 2H4+ rhesus monkey T lymphocytes exhibited a greater proliferative response to lectin and alloantigenic stimulation than 2H4- cells, suggesting that anti-2H4 might separate primate T lymphocytes into functionally distinct cell populations. In fact, helper activity for antibody production by rhesus monkey B lymphocytes in response to pokeweed mitogen (PWM) resided in the 2H4- T-cell population. Furthermore, the 2H4+ T-lymphocyte population activated the suppressor function of T8+ rhesus monkey cells. The fact that the surface antigen which defines this T-cell subset is widely conserved in nonhuman primates suggests that anti-2H4 recognizes a functionally important structure.  相似文献   

2.
Although their precise roles are not well defined, gammadelta T lymphocytes are recognized as regular components of immune responses. These cells express a limited T cell receptor repertoire and they can be stimulated by soluble ligands without conventional processing and presentation by major histocompatibility antigens. Progress in this area has been limited by the substantial differences between murine and human gammadelta T cells and the lack of knowledge about these cells in nonhuman primates. We used molecular analysis of T cell receptor diversity to characterize gammadelta T cell populations from peripheral blood and colon of rhesus macaques (Macaca mulatta). The gammadelta T cell receptor diversity was limited and distinct for these tissue compartments, particularly in the TCRGV2 family. Furthermore, the TCRDV1 + subset of peripheral blood gammadelta T cells showed signs of progressive oligoclonalization as a function of age. Similar observations have been reported for human tissue samples and our results validate rhesus macaques as an appropriate animal model for studying primate gammadelta T cell populations.  相似文献   

3.
R. M. Sharp 《Genetica》1987,73(1-2):81-84
Monoclonal antibodies, because of their specificity and unlimited availability, have become one of the most powerful experimental tools available to the biological sciences. It is possible to make monoclonal antibodies that bind to determinants that are monomorphic in one or more species or to determinants that are polymorphic within a species. Few monoclonal antibodies have been made using immunogens derived from nonhuman primates. However, some monoclonal antibodies that recognize monotypic markers in humans can be used to detect polymorphic markers in nonhuman primates. Thus, the rapid development of monoclonal antibodies specific for human proteins significantly increases the potential number of immunogenetic markers useful for studying phylogenetic relationships and for identifying genetic polymorphisms among nonhuman primates.  相似文献   

4.
Effects of anti-human pan-T-specific monoclonal antibodies of the Second International Workshop on Human Leucocyte Differentiation Antigens were investigated in a number of lymphocyte functional tests. Monoclonal antibodies blocking antibody-dependent cytotoxicity (ADCC), PWM-induced IL-2 release, or Con A- and PWM-induced lymphocyte proliferation were found among anti-CD2 and CD3 reagents. Inhibition of lectin-dependent cellular cytotoxicity (LDCC) was found as an exclusive effect of anti-CD2 (the sheep red cell receptor) antibodies. Several anti-CD2s blocked natural killer (NK) activity and/or PWM-induced interferon production. These two effects were exerted by antibodies against epitopes on resting T cells but not by those directed to activation epitopes. The inhibitory activity of individual antibodies in the LDCC and NK tests showed a good correlation. Also, PHA-mediated cytotoxicity (LDCC) and proliferation were in good correlation. Concerning anti-CD3 (T3) reagents, some effects were characteristic for the majority of the antibodies in this group. Namely, induction of proliferation, enhancement of IL-2-dependent cell division, IL-2 consumption by antibody-triggered cells, inhibition of mitogen-induced proliferation but not IL-2 and interferon production were observed. None of the CD3-specific reagents exerted all of these effects. In general, no correlation of the effects with immunoglobulin subclass or CD3 subcluster specificity could be found. Further epitope analysis and affinity data may be required to understand the basis of heterogeneity in functional effects of monoclonal antibodies to the CD3 molecule.  相似文献   

5.
The aim of this study was to elucidate the in vitro response of gammadelta T cells to Epstein-Barr virus (EBV)-infected B cells and to determine whether EBV-induced heat shock proteins (HSPs) might serve as gammadelta T-cell stimulants. Cytofluorometric analysis revealed HSP90 cell surface expression in 12% of the EBV-immortalized B-cell population in all four of the B-cell lines tested. HSP27, HSP60, and HSP70 were not detected on the cell surface by cytofluorometry in these same B-cell lines. HSP90 and HSP60, but not HSP70 or HSP27, were detected on the cell surface after 125I cell surface labeling and immunoprecipitation with anti-human HSP monoclonal antibodies. In vitro kinetic studies indicated that gammadelta T cells increased at least twofold by day 11 postinfection in cultures of EBV-seronegative peripheral blood lymphocytes infected with EBV, whereas percentages of alphabeta T cells in these same cultures either decreased slightly or remained relatively unchanged in response to EBV infection. Addition of anti-human HSP90 monoclonal antibody to the EBV-infected lymphocyte cultures inhibited gammadelta T-cell expansion by 92%. The inhibition of gammadelta T-cell expansion by anti-HSP90 antibody was reversed upon treatment with exogenous HSP90. Taken together, these results indicate that HSP90 played an important role in the stimulation of gammadelta T cells during EBV infection of B cells in vitro and may serve as an important immunomodulator of gammadelta T cells during acute EBV infection.  相似文献   

6.
Vaccine-induced immunity to Ebola virus infection in nonhuman primates (NHPs) is marked by potent antigen-specific cellular and humoral immune responses; however, the immune mechanism of protection remains unknown. Here we define the immune basis of protection conferred by a highly protective recombinant adenovirus virus serotype 5 (rAd5) encoding Ebola virus glycoprotein (GP) in NHPs. Passive transfer of high-titer polyclonal antibodies from vaccinated Ebola virus-immune cynomolgus macaques to naive macaques failed to confer protection against disease, suggesting a limited role of humoral immunity. In contrast, depletion of CD3(+) T cells in vivo after vaccination and immediately before challenge eliminated immunity in two vaccinated macaques, indicating a crucial requirement for T cells in this setting. The protective effect was mediated largely by CD8(+) cells, as depletion of CD8(+) cells in vivo using the cM-T807 monoclonal antibody (mAb), which does not affect CD4(+) T cell or humoral immune responses, abrogated protection in four out of five subjects. These findings indicate that CD8(+) cells have a major role in rAd5-GP-induced immune protection against Ebola virus infection in NHPs. Understanding the immunologic mechanism of Ebola virus protection will facilitate the development of vaccines for Ebola and related hemorrhagic fever viruses in humans.  相似文献   

7.
T-lymphocyte markers of peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) of C. aethiops monkeys were studied by using anti-human monoclonal antibodies. The results show that C. aethiops T lymphocytes express surface markers which react specifically with anti-human MoAbs including CD3, CD4, CD8, CD2. However, very few CD3-positive cells were found, in contrast to the abundance in CD8+ cells. There is a high conservation of receptors forming E rosettes with AET-treated SRBCs, and antigens reacting with the anti-human T and B cell monoclonal antibody (Campath-1). The present findings indicate that C. aethiops can be used as a new experimental model for studies on T-cell depletion from bone marrow with Campath-1 MoAb + rabbit C.  相似文献   

8.
A series of mouse monoclonal anti-CD4 preparations was characterized for the ability to recognize overlapping epitopes on CD4 and to inhibit HIV/simian immunodeficiency virus (SIV) syncytium formation. Based on this characterization, mAb able to recognize CD4 epitopes overlapping the HIV binding site were selected and used to immunize nonhuman primates to elicit the production of specific anti-Id antibodies. Five baboons and five rhesus monkeys were immunized with either individual or a cocktail consisting of several monoclonal anti-CD4 preparations. All the nonhuman primates produced specific anti-Id that recognized either private or cross-reactive Id depending on the monoclonal anti-CD4 used to generate the anti-Id response. Inhibition assays were performed to ascertain the ability of: 1) soluble CD4 to inhibit the Id-anti-Id reaction and 2) the various anti-Id to inhibit the CD4-monoclonal anti-CD4 reaction. These studies demonstrated that some of the anti-Id recognized a cross-reactive Id that was associated with the Ag-combining site. In addition, some of the anti-Id weakly recognized SIV gp120 by Western blot analysis. These studies may be useful in designing experiments that may lead to a better understanding of the CD4-HIV gp120 interaction and to the production of Id and/or anti-Id reagents that might be used to manipulate this virus-receptor interaction.  相似文献   

9.
Passive transfer studies using monoclonal or polyclonal antibodies in the macaque model have been valuable for determining conditions for antibody protection against immunodeficiency virus challenge. Most studies have employed hybrid simian/human immunodeficiency virus (SHIV) challenge in conjunction with neutralizing human monoclonal antibodies. Passive protection against SIV, particularly the pathogenic prototype virus SIVmac239, has been little studied because of the paucity of neutralizing antibodies to this virus. Here, we show that the antibody-like molecule CD4-IgG2 potently neutralizes SIVmac239 in vitro. When administered by an osmotic pump to maintain concentrations given the short half-life of CD4-IgG2 in macaques, the molecule provided sterilizing immunity/protection against high-dose mucosal viral challenge to a high proportion of animals (5/7 at a 200 mg dose CD4-IgG2 and 3/6 at a 20 mg dose) at serum concentrations below 1.5 μg/ml. The neutralizing titers of such sera were predicted to be very low and indeed sera at a 1∶4 dilution produced no neutralization in a pseudovirus assay. Macaque anti-human CD4 titers did develop weakly at later time points in some animals but were not associated with the level of protection against viral challenge. The results show that, although SIVmac239 is considered a highly pathogenic virus for which vaccine-induced T cell responses in particular have provided limited benefit against high dose challenge, the antibody-like CD4-IgG2 molecule at surprisingly low serum concentration affords sterilizing immunity/protection to a majority of animals.  相似文献   

10.
Macaque monkeys are frequently used in models for studies of infectious diseases, immunity, transplantation and vaccine development. Such use is largely due to the conservation of functionally important cell surface molecules and the phylogenetic proximity of their immune systems to that of humans. Some monoclonal antibodies (mAb) raised against human leukocyte antigens can be utilized in the monkey. Until recently, many primate centers have utilized the CD2 monoclonal antibody to enumerate T lymphocytes. We have evaluated the anti-human CD3 mAb in macaques and sooty mangabeys. Using this monoclonal antibody, pigtailed macaques were found to have a much higher proportion of CD2+ CD3- CD8+ cells as compared with rhesus macaques and sooty mangabeys. Such cells comprised approximately one-half of all CD8+ cells in the pigtailed macaque, but only one-quarter of CD8+ cells in the rhesus, and one-fifth in the sooty mangabey. Use of the CD2 monoclonal antibody as the T-cell marker resulted in underestimating CD4/CD8 ratios compared with using the CD3 mAb in pigtailed macaques. Phenotypic characterization of this subset of CD3- CD8+ cells indicated that they are CD16+, CD45RA+, CD11b+, CD69+ and CD28-. This would indicate that these cells represent an activated natural killer cell subset.  相似文献   

11.
Nonhuman primates are extremely valuable animal models for a variety of human diseases. However, it is now becoming evident that these models, although widely used, are still uncharacterized. The major role that nonhuman primate species play in AIDS research as well as in the testing of Ab-based therapeutics requires the full characterization of structure and function of their Ab molecules. IgA is the Ab class mostly involved in protection at mucosal surfaces. By binding to its specific Fc receptor CD89, IgA plays additional and poorly understood roles in immunity. Therefore, Ig heavy alpha (IGHA) constant (C) genes were cloned and sequenced in four different species (rhesus macaques, pig-tailed macaques, baboons, and sooty mangabeys). Sequence analysis confirmed the high degree of intraspecies polymorphism present in nonhuman primates. Individual animals were either homozygous or heterozygous for IGHA genes. Highly variable hinge regions were shared by animals of different geographic origins and were present in different combinations in heterozygous animals. Therefore, it appears that although highly heterogeneous, hinge sequences are present only in limited numbers in various nonhuman primate populations. A macaque recombinant IgA molecule was generated and used to assess its interaction with a recombinant macaque CD89. Macaque CD89 was able to bind its native ligand as well as human IgA1 and IgA2. Presence of Ag enhanced macaque IgA binding and blocking of macaque CD89 N-glycosylation reduced CD89 expression. Together, our results suggest that, despite the presence of IgA polymorphism, nonhuman primates appear suitable for studies that involve the IgA/CD89 system.  相似文献   

12.
Abstract: There are relatively few monoclonal antibodies (mAb) that have been characterized for their applicability in studies on the immune system of various nonhuman primates. In the present study, we identified a large number of mAb that can be used in future immunological studies in three different nonhuman primates, i.e., chimpanzees, rhesus macaques, and squirrel monkeys. The reactivity of 161 anti-human mAb to T-cell antigens and cytokine receptors were tested on peripheral blood mononuclear cells (PBMC) from the three primate species by flow cytometric analysis. A total of 105 (65%), 73 (45%), and 68 (42%) antibodies reacted with PBMC from chimpanzees, rhesus macaques, and squirrel monkeys, respectively. Out of the 161 mAb, 38 reacted with all three species and 112 reacted with one or two of the species. No specific reaction was observed with mAb to receptors to GM-CSF, 4–1BB, FLT3, FLX2, common β-chain, IL-1 (type I receptor), and IL-8.  相似文献   

13.
14.
We examined a potential role of gammadelta T cells in protective immunity to blood-stage Plasmodium berghei XAT infection. Plasmodium berghei XAT is an attenuated variant of the lethal strain P. berghei NK65 and its infection is self-resolving in immune competent mice. To determine whether gammadelta T cells are essential for the resolution of P. berghei XAT malaria, mice were depleted of gammadelta T cells with anti-TCRgammadelta antibody treatment. Although mice that had received control antibody resolved infections, mice received anti-TCRgammadelta antibody could not control their infections and eventually died. Spleen cells from infected mice produced IFN-gamma and nitric oxide (NO) within the first week of infection, however, levels of IFN-gamma and NO in gammadelta T cell-depleted mice were significantly lower than in control mice. To examine whether gammadelta T cells are involved in the antibody production, malarial-specific antibodies of the various isotypes were measured in the sera of gammadelta T cell-depleted mice and control mice. Serum levels of IgG2a, which was known to be a protective antibody in P. berghei XAT malaria, were significantly lower in gammadelta T cell-depleted mice than in control mice, whereas levels of IgG1 were comparable to those in control mice. Our results indicated that the presence of the gammadelta T cell subset was essential for resolution of blood-stage P. berghei XAT malaria and played a modulatory role in the development of Th1 response and host defense against this malarial parasites.  相似文献   

15.
Previous work from our laboratory described a human T cell soluble ligand that inhibited T cell proliferative responses to mitogen and alloantigen by interacting with CD7 and/or the receptor for the IgM-Fc portion (FcR mu) on T cells. In this report, we used mouse anti-human CD7 monoclonal antibodies (mAb) and purified human IgM (HIgM) to substitute for the human ligand and examined the possible involvement of these receptors in the inhibition of T cell proliferation. Preincubation of human T cells with mouse anti-CD7 mAb, HIgM, mouse anti-human IgM (MAH IgM) alone, or any of these combinations as a primary antibody did not inhibit mitogen- or alloantigen-induced T cell replication. Similar effects were seen with the pretreatment of T cells with an irrelevant negative control primary mAb or a secondary-step goat anti-mouse immunoglobulin (GAM Ig), goat anti-human IgM-Fc (GAH Fc mu), or both. In contrast, the pretreatment of T cells with anti-CD7 and/or HIgM followed by the appropriate secondary-step crosslinking antibody significantly reduced their proliferative responses to mitogen and alloantigen. Similarly, crosslinking of CD7 and FcR mu on human transformed T cell lines inhibited their spontaneous proliferation. The inhibitory effect of crosslinking CD7 and FcR mu was not due to cytotoxic effects of these antibodies and appears to be temperature sensitive. These findings suggest that crosslinking CD7 and/or FcR mu appears to have a novel role in down-regulating T cell proliferation.  相似文献   

16.
Previous studies have shown that hematopoietic progenitor cells can be isolated from human or nonhuman primate bone marrow (BM) cells. In the present study, we studied the cross-reactivity of 13 anti-human CD34, two anti-human c-Kit, and one anti-human CD133 monoclonal antibodies (mAbs) with cynomolgus macaque (Macaca fascicularis) BM cells, using flow cytometric analysis, cell enrichment, and clonogenic assay. Among the 13 anti-human CD34 mAbs assessed, six cross-reacted as previously reported by other groups. However, only three of these six mAbs (clones 561, 563, and 12.8) recognized cynomolgus CD34+ cells that formed progenitor colonies when grown in methylcellulose culture. Similarly, of the two anti-human c-Kit mAbs (clones NU-c-kit and 95C3) that were previously reported to cross-react with cynomolgus BM cells, only one (clone NU-c-kit) resulted in a similar outcome. The anti-human CD133 mAb (clone AC133) also cross-reacted with cynomolgus BM cells, although these cells did not give rise to colonies when grown in culture. These results suggest that antibodies that cross-react with nonhuman primate cells may not identify the hematopoietic cells of interest. In addition, while the CD34 mAb (clone 561) results in the selection of hematopoietic progenitor cells of all lineages when assessed in methylcellulose culture, the c-Kit(high) fraction (NU-c-kit) exclusively identifies erythroid-specific progenitor cells after growth in culture. It is important to consider these findings when selecting cross-reacting mAbs to identify cells of hematopoietic lineages in macaque species.  相似文献   

17.
Coxsackievirus B3 infection causes significant cardiac inflammation in male, but not female, B1.Tg.Ealpha mice. This gender difference in disease susceptibility correlates with selective induction of CD4(+) Th1 (gamma interferon-positive) cell responses in animals with testosterone, whereas estradiol promotes preferential CD4(+) Th2 (interleukin-4 positive [IL-4(+)]) cell responses. Differences in immune deviation of CD4(+) T cells cannot be explained by variation in B7-1 or B7-2 expression. Infection significantly upregulated both molecules, but no differences were detected between estradiol- and testosterone-treated groups. Significantly increased numbers of activated (CD69(+)) T cells expressing the gammadelta T-cell receptor were found in male and testosterone-treated male and female mice. In vivo depletion of gammadelta+ cells by using monoclonal antibodies inhibited myocarditis and resulted in a shift from a Th1 to Th2 response phenotype. Taken together, our results indicate that testosterone promotes a CD4(+) Th1 cell response and myocarditis by promoting increased gammadelta+ cell activation.  相似文献   

18.
Vgamma2Vdelta2(+) T cells exist only in primates and constitute the majority of circulating human gammadelta T cells. Recent studies have demonstrated that this unique gammadelta T cell subpopulation can be a component of adaptive immune responses and contribute to anti-microbial immunity to infections.  相似文献   

19.
A panel of monoclonal antibody reagents has been identified that can be used for routine monitoring of subsets of peripheral blood mononuclear cells (PBMC) from Macaca mulatta (rhesus macaques), Macaca nemestrina (pig-tailed macaques), and Cercocebus atys (sooty mangabeys). The procedure uses fluorescein and phycoerythrin conjugates of the monoclonal antibodies in appropriate combinations, so that two-color microfluorometric analyses can be readily performed on as little as 1.2 ml of EDTA blood. PBMC from a total of 20 normal adult rhesus macaques, 21 normal adult pig-tailed macaques, 4 SIV? sooty mangabeys, and 16 SIV+ adult sooty mangabeys were analyzed with the panel of monoclonal reagents and flow microfluorometry. The mean frequency, absolute numbers, and range for each subset in these nonhuman primate species are described. Sooty mangabeys appeared markedly different from the other two primate species. The PBMCs from the mangabeys had a higher mean frequency and absolute number of total T cells, Leu-3a+/18? T cells, suppressor (Leu?2a+) T cells, which were HLA-DR+, and IL-2R+ cells. Functional helper, suppressor, natural killer (NK), lymphokine activated killer (LAK), and antigen-presenting cell studies were also performed to correlate phenotype with immune function. Data indicate that Leu?3a+ T cells (CD4+) and Leu?2a+ T cells (CD8+) in these primate species represent human equivalents of helper and suppressor T cells, respectively. NK and LAK effector cells in the rhesus and pig-tailed macaques appear to be predominantly Leu?19+. In contrast, Leu?2a+ cells appear to be the predominant NK and LAK effector cell in sooty mangabeys. These data provide a basis for routine evaluation of lymphocyte subsets in these nonhuman primate species, and provide a means to correlate phenotype with immune function.  相似文献   

20.
The cell growth and monoclonal antibody production of the 55-6 hybridoma cell co-cultured with the murine thymoma cell line EL-4 at different initial 55-6:EL-4 ratios were investigated. Both populations were seeded in co-culture without previous stimulation and therefore with low constitutive CD40 and CD40 ligand (CD154) expression levels, and in the absence of exogenous co-stimuli. Viable cell density and growth rate data seem to suggest a competition for nutrients, which is detrimental for both cells in terms of biomass production and also of growth rate for 55-6. Final concentrations of antibody and specific antibody production rates were affected by the initial 55-6:EL-4 ratio. The 4:1 ratio yielded the highest IgG2a concentration, whereas the highest specific antibody production rate was obtained at the 2:1 ratio. Changes mainly in CD154 and also in CD40 expression in co-cultures could suggest cross-talk between both populations. In conclusion, different types of interactions are probably present in this co-culture system: competition for nutrients, cognate interaction and/or autocrine or paracrine interactions that influence the proliferation of both cells and the hybridoma antibody secretion. We are hereby presenting a pre-scale-up process that could speed up the optimization of large-scale monoclonal antibodies production in bioreactors by emulating the in vivo cell–cell interaction between B and T cells without previous stimulation or the addition of co-stimulatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号