首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

2.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

3.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   

4.
Gap junctional intercellular communication (GJIC) is thought to play a crucial role in cell differentiation. Small gap junction plaques are frequently associated with tight junction strands in hepatocytes, suggesting that gap junctions may be closely related to the role of tight junctions in the establishment of cell polarity. To examine the exact role of gap junctions in regulating tight junctions, we transfected connexin 32 (Cx32), Cx26, or Cx43 cDNAs into immortalized mouse hepatocytes derived from Cx32-deficient mice and examined the expression and function of the endogenous tight junction molecules. In transient wild-type Cx32 transfectants, immunocytochemistry revealed that endogenous occludin was in part localized at cell borders, where it was colocalized with Cx32, whereas neither was detected in parental cells. In Cx32 null hepatocytes transfected with Cx32 truncated at position 220 (R220stop), wild-type Cx26, or wild-type Cx43 cDNAs, occludin was not detected at cell borders. In stable wild-type Cx32 transfectants, occludin, claudin-1, and ZO-1 mRNAs and proteins were significantly increased compared to parental cells and all of the proteins were colocalized with Cx32 at cell borders. Treatment with a GJIC blocker, 18 beta-glycyrrhetinic acid, resulted in decreases of occludin and claudin-1 at cell borders in the stable transfectants. The induction of tight junction proteins in the stable transfectants was accompanied by an increase in both fence and barrier functions of tight junctions. Furthermore, in the stable transfectants, circumferencial actin filaments were also increased without a change of actin protein. These results indicate that Cx32 formation and/or Cx32-mediated intercellular communication may participate in the formation of functional tight junctions and actin organization.  相似文献   

5.
The epithelial barrier of the upper respiratory tract, such as that of the nasal mucosa, plays a crucial role in host defense. The epithelial barrier is regulated in large part by the apical-most intercellular junctions, referred to as tight junctions. However, the mechanisms regulating of tight junction barrier in human nasal epithelial cells remain unclear because the proliferation and storage of epithelial cells in primary cultures are limited. In the present study, we introduced the catalytic component of telomerase, the hTERT gene, into primary cultured human nasal epithelial cells and examined the properties of the transfectants, including their expression of tight junctions, compared with primary cultures. The ectopic expression of hTERT in the epithelial cells resulted in adequate growth potential and a longer lifespan of the cells. The properties of the passaged hTERT-transfected cells including tight junctions were similar to those of the cells in primary cultures. The barrier function in the transfectants after treatment with 10% FBS was significantly enhanced with increases of integral tight junction proteins claudin-1 and -4. When the transfectants were treated with TGF-β, which is assosciated with nasal polyposis and chronic rhinosinusitis, upregulation of only claudin-4 was observed, without a change of barrier function. In human nasal epithelial cells, the claudins may be important for barrier function and a novel target for a drug-delivery system. Our results indicate that hTERT-transfected human nasal epithelial cells with an extended lifespan can be used as an indispensable and stable model for studying the regulation of claudins in human nasal epithelium. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports Science, and Technology of Japan, the Ministry of Health, Labor, and Welfare of Japan, Japan Science and Technology Agency, the Akiyama Foundation, and the Long-Range Research Initiative Project of the Japan Chemical Industry Association.  相似文献   

6.
Small gap junction plaques are associated with tight junction strands in some cell types including hepatocytes and it is thought that they may be closely related to tight junctions and the establishment of cell polarity. In order to examine roles of gap junctions in regulating expression and structure of tight junctions, we transfected human Cx32 cDNA into immortalized mouse hepatocytes (CHST8 cells) which lack endogenous Cx32 and Cx26. Immunocytochemistry revealed that endogenous integral tight junction protein occludin was strongly localized and was colocalized with Cx32 at cell borders in transfectants, whereas neither was detected in parental cells. In Northern blots, mRNAs encoding occludin and the other integral tight junction proteins, claudin-1 and -2, were induced in the transfectants compared to parental cells. In Western blots, occludin protein was increased in the transfectants compared to parental cells, and binding of occludin to Cx32 protein was demonstrated by immunoprecipitation. In freeze fracture of the transfectants, tight junction strands were more numerous and complex compared to parental cells, and small gap junction plaques appeared within induced tight junction strands. Nevertheless, no change in barrier function of tight junctions was observed. These results indicate that in hepatocytes, gap junction, and tight junction expression are closely coordinated, and that Cx32 may play a role in regulating occludin expression.  相似文献   

7.
8.
9.

Background

Tight junctions seal the space between adjacent epithelial cells. Mounting evidence suggests that tight junction proteins play a key role in the pathogenesis of human disease. Claudin is a member of the tight junction protein family, which has 24 members in humans. To regulate cellular function, claudins interact structurally and functionally with membrane and scaffolding proteins via their cytoplasmic domain. In particular, claudin-2 is known to be a leaky protein that contributes to inflammatory bowel disease and colon cancer. However, the involvement of claudin-2 in bacterial infection in the intestine remains unknown.

Methods/Principal Findings

We hypothesized that Salmonella elevates the leaky protein claudin-2 for its own benefit to facilitate bacterial invasion in the colon. Using a Salmonella-colitis mouse model and cultured colonic epithelial cells, we found that pathogenic Salmonella colonization significantly increases the levels of claudin-2 protein and mRNA in the intestine, but not that of claudin-3 or claudin-7 in the colon, in a time-dependent manner. Immunostaining studies showed that the claudin-2 expression along the crypt-villous axis postinfection. In vitro, Salmonella stimulated claudin-2 expression in the human intestinal epithelial cell lines SKCO15 and HT29C19A. Further analysis by siRNA knockdown revealed that claudin-2 is associated with the Salmonella-induced elevation of cell permeability. Epithelial cells with claudin-2 knockdown had significantly less internalized Salmonella than control cells with normal claudin-2 expression. Inhibitor assays demonstrated that this regulation is mediated through activation of the EGFR pathway and the downstream protein JNK.

Conclusion/Significance

We have shown that Salmonella targets the tight junction protein claudin-2 to facilitate bacterial invasion. We speculate that this disruption of barrier function contributes to a new mechanism by which bacteria interact with their host cells and suggests the possibility of blocking claudin-2 as a potential therapeutic strategy to prevent bacterial invasion.  相似文献   

10.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

11.
Liver regeneration and cholestasis are associated with adaptive changes in expression of gap and tight junctions through signal transduction. The roles of stress responsitive MAP-kinase, p38 MAP-kinase, in the signaling pathway for gap junction protein, Cx32, and tight junction protein, claudin-1, were examined in rat liver in vivoand in vitro, including regeneration following partial hepatectomy and cholestasis after common bile duct ligation. Changes in the expression and function of Cx32 and claudin-1 in hepatocytes in vivowere studied using the p38 MAP-kinase inhibitor SB203580. Following partial hepatectomy and common bile duct ligation, down-regulation of Cx32 protein was inhibited by SB203580 treatment. Up-regulation of claudin-1 protein was enhanced by SB203580 treatment after partial hepatectomy but not common bile duct ligation. However, no change of the Ki-67 labeling index (which is a marker for cell proliferation) in the livers treated with SB203580, was observed compared to that without SB203580 treatment. In primary cultures of rat hepatocytes, however, treatment with a p38 MAP-kinase activator, anisomycin, decreased Cx32 and claudin-1 protein levels. p38 MAP-kinase may be an important signaling pathway for regulation of gap and tight junctions in hepatocytes. Changes of gap and tight junctions during liver regeneration and cholestasis are shown to be in part controlled via the p38 MAP-kinase signaling pathway and are independent of cell growth.  相似文献   

12.
To examine the mechanism(s) and pathways of gap junction formation and removal a novel and reversible inhibitor of protein secretion, ilimaquinone (IQ), was employed. IQ has been reported to cause the vesiculation of Golgi membranes, block protein transport at the cis-Golgi and depolymerize cytoplasmic microtubules. Connexin43 (Cx43) immunolabeling and dye microinjection experiments revealed that gap junction plaques were lost and intercellular communication was inhibited following IQ treatment for 1 hr in BICR-M1Rk rat mammary tumor cells and for 2 hr in normal rat kidney (NRK) cells. Gap junction plaques and intercellular communication recovered within 2 hr when IQ was removed. IQ, however, did not affect the distribution of zonula occludens-1, a protein associated with tight junctions. Western blot analysis revealed that the IQ-induced loss of gap junction plaques was accompanied by a limited reduction in the highly phosphorylated form of Cx43, previously shown to be correlated with gap junction plaques. The presence of IQ inhibited the formation of new gap junction plaques in BICR-M1Rk cells under conditions where preexisting gap junctions were downregulated by brefeldin A treatment. Treatment of BICR-M1Rk and NRK cells with other microtubule depolymerization agents did not inhibit plaque formation or promote rapid gap junction removal. These findings suggest that IQ disrupts intercellular communication by inhibiting the events that are involved in plaque formation and/or retention at the cell surface independent of its effects on microtubules. Our results also suggest that additional factors other than phosphorylation are necessary for Cx43 assembly into gap junction plaques. Received: 16 January 1996/Revised: 20 September 1996  相似文献   

13.
In salivary glands, primary saliva is produced by acini and is modified by the reabsorption and secretion of ions in the ducts. Thus, the permeability of intercellular junctions in the ducts is considered to be lower than in the acini. We have examined the relationship between the expressed claudin isotypes and the barrier functions of tight junctions in a submandibular gland epithelial cell line, SMIE. SMIE cells were originally derived from rat submandibular duct cells, but their barrier functions are not as efficient as those of Madin-Darby canine kidney cells. Large molecules, such as 70-kDa dextran, diffuse across the monolayers, although E-cadherin and occludin, adherens junction and tight junction proteins, respectively, are expressed in SMIE cells. Claudin-3 protein has also been detected, but the expression level of claudin-3 mRNA is much lower than in the original submandibular glands. Other claudins including claudin-4 (originally expressed in the duct cells) have not been detected. Because of the limited expression of claudins, SMIE cells are suitable for studying the role(s) of claudins. To examine the function of claudin-4 in submandibular glands, we have overexpressed green fluorescence protein (GFP)-fused claudin-4 in SMIE cells. Cells that express GFP-fused claudin-4 have a higher transepithelial electrical resistance and a lower permeability of 70-kDa dextran, although the expression levels of occludin and claudin-3 are hardly affected. Therefore, claudin-4 plays a role in the regulation of the barrier function of tight junctions in submandibular glands. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868), by a Nihon University Multidisciplinary Research Grant for 2006 and 2007, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

14.
15.
目的:研究体外大鼠睾丸支持细胞紧密连接蛋白(SCJP)在类雌激素-双酚A(BPA)干扰下的损伤机制。方法:对Wistar大鼠睾丸支持细胞(Sertoli细胞)离体原代培养4-5d,通过双室培养模型建立体外紧密连接(TJ)渗透性屏障,并测量其跨上皮电阻值(TER)反应紧密连接结构的形成及BPA对紧密连接的损害程度。设溶剂(DMSO)做阴性对照,以终浓度为25μM、100μM的BPA作用于支持细胞24h,MTT法测不同浓度BPA作用的Sertoli细胞增殖活性。Western bloting观察occludin、ZO-1、Cx43表达的变化。结果:成功分离并培养Wistar大鼠睾丸支持细胞,并建立良好的体外TJ屏障模型。双室培养支持细胞上皮TER值在培养的d4达到顶峰,然后在d4-9维持相对较稳定的状态,d4以200μM,100μM,25μM BPA染毒,分别于染毒后24,48,72,96和120h测TER:与DMSO溶剂对照组相比,200μM,100μM的BPA组TER值明显下降(P<0.05),而25μM的BPA组在染毒后TER值无明显变化(P>0.05)。MTT结果显示:经不同浓度BPA作用24h后,Sertoli细胞的吸光度(OD值)随着染毒剂量的增加而逐渐降低。102、103μM浓度组与溶剂对照组有显著性差异(P<0.05),而10-2、10-1、100、101μM组和溶剂对照组无显著性差异(P>0.05)。Western blot结果显示:occludin、ZO-1、Cx43在各剂量组均有表达,与溶剂对照组相比,occludin、ZO-1表达均分别随作用剂量的增加而降低:25μM组、100μM组与溶剂对照组相比,差异均存在显著性(P<0.05);100μM组与25μM组相比,差异亦存在显著性(P<0.05)。Cx43的表达却随染毒剂量的增加而增加,与溶剂对照组相比,25μM组表达无明显增加(P>0.05),而100μM组则明显增加(P<0.05);与25μM组相比,100μM组表达明显增加(P<0.05)。结论:双酚A可通过损伤支持细胞连接蛋白正常表达,破坏了TJ屏障渗透性,从而影响正常的精子形成过程。  相似文献   

16.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

17.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sectionsin vivo.Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

18.
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed.  相似文献   

19.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.  相似文献   

20.
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号