首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Activation of gp130 transduces a hypertrophic signal in the heart, but it is not clear whether signalling through gp130 is enhanced when gp130 is overexpressed in vivo. We generated gp130 transgenic mice (TG) and examined the activation of signalling pathways downstream of gp130 in the hearts. The tyrosine phosphorylation of gp130 was enhanced, the phosphorylation of STAT3 and ERK (extracellular signal regulated kinase) 1/2 was increased and induction of the beta-myosin heavy chain (MHC) gene was observed in TG hearts without significant phenotypic changes. Intravenous administration of leukaemia inhibitory factor (LIF) induced tyrosine phosphorylation of STAT3 and ERK 1/2 and expression of c-fos and beta-MHC mRNAs in wild-type littermates' (WT) hearts. However, enhancement of STAT3 and ERK 1/2 phosphorylation or augmented mRNA expressions was not observed in TG hearts after LIF stimulation. Next, STAT-induced STAT inhibitor (SSI) mRNA expression was examined. The expression of SSI-1, SSI-2, and SSI-3 mRNAs was significantly augmented in TG hearts after LIF stimulation. These results indicate that overexpressed gp130 does not always enhance downstream signals in the hearts and suggest that the SSI family plays a role in the regulation of the gp130-dependent signalling pathway in the hearts.  相似文献   

2.
gp130, a common receptor for the interleukin 6 family, plays pivotal roles in growth and survival of cardiac myocytes. In the present study, we examined the role of gp130 in pressure overload-induced cardiac hypertrophy using transgenic (TG) mice, which express a dominant negative mutant of gp130 in the heart under the control of alpha myosin heavy chain promoter. TG mice were apparently healthy and fertile. There were no differences in body weight and heart weight between TG mice and littermate wild type (WT) mice. Pressure overload-induced increases in the heart weight/body weight ratio, ventricular wall thickness, and cross-sectional areas of cardiac myocytes were significantly smaller in TG mice than in WT mice. Northern blot analysis revealed that pressure overload-induced up-regulation of brain natriuretic factor gene and down-regulation of sarcoplasmic reticulum Ca(2+) ATPase 2 gene were attenuated in TG mice. Pressure overload activated ERKs and STAT3 in the heart of WT mice, whereas pressure overload-induced activation of STAT3, but not of ERKs, was suppressed in TG mice. These results suggest that gp130 plays a critical role in pressure overload-induced cardiac hypertrophy possibly through the STAT3 pathway.  相似文献   

3.
Toxoplasma gondii infects astrocytes, neurons and microglia cells in the CNS and, after acute encephalitis, persists within neurons. Robust astrocyte activation is a hallmark of Toxoplasma encephalitis (TE); however, the in vivo function of astrocytes is largely unknown. To study their role in TE we generated C57BL/6 GFAP-Cre gp130(fl/fl) mice (where GFAP is glial fibrillary acid protein), which lack gp130, the signal-transducing receptor for IL-6 family cytokines, in their astrocytes. In the TE of wild-type mice, the gp130 ligands IL-6, IL-11, IL-27, LIF, oncostatin M, ciliary neurotrophic factor, B cell stimulating factor, and cardiotrophin-1 were up-regulated. In addition, GFAP(+) astrocytes of gp130(fl/fl) control mice were activated, increased in number, and efficiently restricted inflammatory lesions and parasites, thereby contributing to survival from TE. In contrast, T. gondii- infected GFAP-Cre gp130(fl/fl) mice lost GFAP(+) astrocytes in inflammatory lesions resulting in an inefficient containment of inflammatory lesions, impaired parasite control, and, ultimately, a lethal necrotizing TE. Production of IFN-gamma and the IFN-gamma-induced GTPase (IGTP), which mediate parasite control in astrocytes, was even increased in GFAP-Cre gp130(fl/fl) mice, indicating that instead of the direct antiparasitic effect the immunoregulatory function of GFAP-Cre gp130(fl/fl) astrocytes was disturbed. Correspondingly, in vitro infected GFAP-Cre gp130(fl/fl) astrocytes inhibited the growth of T. gondii efficiently after stimulation with IFN-gamma, whereas neighboring noninfected and TNF-stimulated GFAP-Cre gp130(fl/fl) astrocytes became apoptotic. Collectively, these are the first experiments demonstrating a crucial function of astrocytes in CNS infection.  相似文献   

4.
5.
6.
Fas is a widely expressed cell surface receptor that can initiate apoptosis when activated by its ligand (FasL). Whereas Fas abundance on cardiac myocytes increases in response to multiple pathological stimuli, direct evidence supporting its role in the pathogenesis of heart disease is lacking. Moreover, controversy exists even as to whether Fas activation induces apoptosis in cardiac myocytes. In this study, we show that adenoviral overexpression of FasL, but not beta-galactosidase, results in marked apoptosis both in cultures of primary neonatal cardiac myocytes and in the myocardium of intact adult rats. Myocyte killing by FasL is a specific event, because it does not occur in lpr (lymphoproliferative) mice that lack functional Fas. To assess the contribution of the Fas pathway to myocardial infarction (MI) in vivo, lpr mice were subjected to 30 min of ischemia followed by 24 h of reperfusion. Compared with wild-type mice, lpr mice exhibited infarcts that were 62.3% smaller with 63.8% less myocyte apoptosis. These data provide direct evidence that activation of Fas can induce apoptosis in cardiac myocytes and that Fas is a critical mediator of MI due to ischemia-reperfusion in vivo.  相似文献   

7.
8.
The mitochondrial phospholipid cardiolipin is required for optimal mitochondrial respiration. In this study, cardiolipin molecular species and cytochrome oxidase (COx) activity were studied in interfibrillar (IF) and subsarcolemmal (SSL) cardiac mitochondria from Spontaneously Hypertensive Heart Failure (SHHF) and Sprague-Dawley (SD) rats throughout their natural life span. Fisher Brown Norway (FBN) and young aortic-constricted SHHF rats were also studied to investigate cardiolipin alterations in aging versus pathology. Additionally, cardiolipin was analyzed in human hearts explanted from patients with dilated cardiomyopathy. A loss of tetralinoleoyl cardiolipin (L(4)CL), the predominant species in the healthy mammalian heart, occurred during the natural or accelerated development of heart failure in SHHF rats and humans. L(4)CL decreases correlated with reduced COx activity (no decrease in protein levels) in SHHF cardiac mitochondria, but with no change in citrate synthase (a matrix enzyme) activity. The fraction of cardiac cardiolipin containing L(4)CL became much lower with age in SHHF than in SD or FBN mitochondria. In summary, a progressive loss of cardiac L(4)CL, possibly attributable to decreased remodeling, occurs in response to chronic cardiac overload, but not aging alone, in both IF and SSL mitochondria. This may contribute to mitochondrial respiratory dysfunction during the pathogenesis of heart failure.  相似文献   

9.
Gp130 cytokine receptor is involved in the formation of multimeric functional receptors for interleukin-6 (IL-6), IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor, and cardiotrophin-1. Cloning of the epitope recognized by an OSM-neutralizing anti-gp130 monoclonal antibody identified a portion of gp130 receptor localized in the EF loop of the cytokine binding domain. Site-directed mutagenesis of the corresponding region was carried out by alanine substitution of residues 186-198. To generate type 1 or type 2 OSM receptors, gp130 mutants were expressed together with either LIF receptor beta or OSM receptor beta. When positions Val-189/Tyr-190 and Phe-191/Val-192 were alanine-substituted, Scatchard analyses indicated a complete abrogation of OSM binding to both type receptors. Interestingly, binding of LIF to type 1 receptor was not affected, corroborating the notion that in this case gp130 mostly behaves as a converter protein rather than a binding receptor. The present study demonstrates that positions 189-192 of gp130 cytokine binding domain are essential for OSM binding to both gp130/LIF receptor beta and gp130/OSM receptor beta heterocomplexes.  相似文献   

10.
Single vasoconstrictor nerve fibers in humans normally fire only once but have the capacity to fire as many as eight times, per cardiac interval. Our laboratory recently demonstrated that the mean firing frequency of individual vasoconstrictor fibers is more than doubled in the sympathoexcitation associated with congestive heart failure (Macefield VG, Rundqvist B, Sverrisdottir YB, Wallin BG, and Elam M. Circulation 100: 1708--1713, 1999). However, the propensity to fire only once per cardiac interval was retained. In the present retrospective study, we tested the hypothesis that vasoconstrictor fibers fire more than once per cardiac interval in response to transient sympathoexcitatory stimuli, providing one mechanism for further increase of an already augmented sympathetic discharge. Six patients with congestive heart failure (New York Heart Association functional class II--IV; left ventricular ejection range 13--37%, average 22%) were studied at rest and during premature ectopic heartbeats. Analyzed for a total of 60 premature beats, the average firing probability of 10 vasoconstrictor fibers increased from 61 to 80% in the prolonged cardiac interval (i.e., reduced diastolic pressure) after premature beats. The incidence of multiple within-burst firing increased markedly, with two spikes being more common than one. Our results illustrate two different mechanisms (increases in firing probability and multiple within-burst firing), and indirectly indicate a third mechanism (recruitment of previously silent fibers), for acute sympathoexcitatory responses.  相似文献   

11.
Cardiac hypertrophy and ensuing heart failure are among the most common causes of mortality worldwide, yet the triggering mechanisms for progression of hypertrophy to failure are not fully understood. Tissue homeostasis depends on proper relationships between cell proliferation, differentiation, and death and any imbalance between them results in compromised cardiac function. Recently, we developed a transgenic (Tg) mouse model that overexpress myotrophin (a 12-kDa protein that stimulates myocyte growth) in heart resulting in hypertrophy that progresses to heart failure. This provided us an appropriate model to study the disease process at any point from initiation of hypertrophy end-stage heart failure. We studied detailed apoptotic signaling and regenerative pathways and found that the Tg mouse heart undergoes myocyte loss and regeneration, but only at a late stage (during transition to heart failure). Several apoptotic genes were up-regulated in 9-month-old Tg hearts compared with age-matched wild type or 4-week-old Tg hearts. Cardiac cell death during heart failure involved activation of Fas, tumor necrosis factor-alpha, and caspases 9, 8, and 3 and poly(ADP-ribose) polymerase cleavage. Tg mice with hypertrophy associated with compromised function showed significant up-regulation of cyclins,cyclin-dependent kinases (Cdks), and cell regeneration markers in myocytes. Furthermore, in human failing and nonfailing hearts, similar observations were documented including induction of active caspase 3 and Ki-67 proteins in dilated cardiomyopathic myocytes. Taken together, our data suggest that the stress of extensive myocardial damage from longstanding hypertrophy may cause myocytes to reenter the cell cycle. We demonstrate, for the first time in an animal model, that cell death and regeneration occur simultaneously in myocytes during end-stage heart failure, a phenomenon not observed at the onset of the disease process.  相似文献   

12.
13.
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone involved in the regulation of phosphate and calcium metabolism. We have evaluated the levels of C-terminal FGF23 (Ct-FGF23) in 73 patients presenting heart failure with reduced ejection fraction (HF-REF) and assess their potential predictive value for long-term survival through a 6 years follow-up. Ct-FGF23 levels were markedly increased in HF-REF. In univariate proportional hazard model, survival was related to glomerular filtration rate (eGFR), intact parathyroid hormone (PTH), B-type natriuretic peptides (BNP) and Ct-FGF23. In a multivariate analysis including age, EF, PTH, BNP, Ct-FGF23, calcium, phosphorus and eGFR levels, Ct-FGF23 is the strongest predictor of long term CV death.  相似文献   

14.
Astrocytes are activated in experimental autoimmune encephalomyelitis (EAE) and have been suggested to either aggravate or ameliorate EAE. However, the mechanisms leading to an adverse or protective effect of astrocytes on the course of EAE are incompletely understood. To gain insight into the astrocyte-specific function of gp130 in EAE, we immunized mice lacking cell surface expression of gp130, the signal-transducing receptor for cytokines of the IL-6 family, with myelin oligodendrocyte glycoprotein(35-55) peptide. These glial fibrillary acid protein (GFAP)-Cre gp130(fl/fl) mice developed clinically a significantly more severe EAE than control mice and succumbed to chronic EAE. Loss of astrocytic gp130 expression resulted in apoptosis of astrocytes in inflammatory lesions of GFAP-Cre gp130(fl/fl) mice, whereas gp130(fl/fl) control mice developed astrogliosis. Astrocyte loss of GFAP-Cre gp130(fl/fl) mice was paralleled by significantly larger areas of demyelination and significantly increased numbers of CD4 T cells in the CNS. Additionally, loss of astrocytes in GFAP-Cre gp130(fl/fl) mice resulted in a reduction of CNS regulatory Foxp3(+) CD4 T cells and an increase of IL-17-, IFN-γ-, and TNF-producing CD4 as well as IFN-γ- and TNF-producing CD8 T cells, illustrating that astrocytes regulate the phenotypic composition of T cells. An analysis of mice deficient in either astrocytic gp130- Src homology region 2 domain-containing phosphatase 2/Ras/ERK or gp130-STAT1/3 signaling revealed that prevention of astrocyte apoptosis, restriction of demyelination, and T cell infiltration were dependent on the astrocytic gp130-Src homology region 2 domain-containing phosphatase 2/Ras/ERK, but not on the gp130-STAT1/3 pathway, further demonstrating that gp130-dependent astrocyte activation is crucial to ameliorate EAE.  相似文献   

15.
Myosin VI is an unconventional motor protein, and its mutation is responsible for the familiar conditions sensorineural deafness and hypertrophic cardiomyopathy. Myosin VI is found to play a key role in the protein trafficking and homeostasis of the Golgi complex. However, very little is known about how myosin VI is regulated and whether myosin VI has a function in the DNA damage response. Here, we found that myosin VI is regulated by DNA damage in a p53-dependent manner and possesses a novel function in the p53-dependent prosurvival pathway. Specifically, we show that myosin VI is induced by p53 and DNA damage in a p53-dependent manner. We found that p53 directly binds to, and activates, the promoter of the myosin VI gene. We also show that the intracellular localization of myosin VI is substantially altered by p53 and DNA damage in a p53-dependent manner such that the pool of myosin VI in endocytic vesicles, membrane ruffles, and cytosol migrates to the Golgi complex, perinuclear membrane, and nucleus. Furthermore, we show that knockdown of myosin VI attenuates activation of p53 and impairs Golgi complex integrity, which makes myosin VI-deficient cells susceptible to apoptosis upon DNA damage. Taken together, we found a novel function for p53 in the maintenance of Golgi complex integrity and for myosin VI in the p53-dependent prosurvival pathway.  相似文献   

16.
17.
18.
We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.  相似文献   

19.
We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal–Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.  相似文献   

20.
《Biophysical journal》2022,121(6):943-955
Cyanobacteria possesses the simplest circadian clock, composed of three proteins that act as a phosphorylation oscillator: KaiA, KaiB, and KaiC. The timing of this oscillator is determined by the fold-switch of KaiB, a structural rearrangement of its C-terminal half that is accompanied by a change in the oligomerization state. During the day, KaiB forms a stable tetramer (gsKaiB), whereas it adopts a monomeric thioredoxin-like fold during the night (fsKaiB). Although the structures and functions of both native states are well studied, little is known about the sequence and structure determinants that control their structural interconversion. Here, we used confinement molecular dynamics (CCR-MD) and folding simulations using structure-based models to show that the dissociation of the gsKaiB dimer is a key energetic event for the fold-switch. Hydrogen-deuterium exchange mass spectrometry (HDXMS) recapitulates the local stability of protein regions reported by CCR-MD, with both approaches consistently indicating that the energy and backbone flexibility changes are solely associated with the region that fold-switches between gsKaiB and fsKaiB and that the localized regions that differentially stabilize gsKaiB also involve regions outside the dimer interface. Moreover, two mutants (R23C and R75C) previously reported to be relevant for altering the rhythmicity of the Kai clock were also studied by HDXMS. Particularly, R75C populates dimeric and monomeric states with a deuterium incorporation profile comparable to the one observed for fsKaiB, emphasizing the importance of the oligomerization state of KaiB for the fold-switch. These findings suggest that the information necessary to control the rhythmicity of the cyanobacterial biological clock is, to a great extent, encoded within the KaiB sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号