首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For several decades the relationships within the Branchiopoda (Anostraca + Phyllopoda) have been a matter of controversy. Interpretations of plesiomorphic or apomorphic character states are a difficult venture, in particular in the Phyllopoda. We explore the relationships within the Phyllopoda at the level of nucleotid comparisons of the two genes 12S rDNA (mitochondrial) and EF1alpha (nuclear), and at a higher molecular level based on introns found in the gene EF1alpha. Within the Phyllopoda our explorations show further evidence for a non-monophyletic Conchostraca (Spinicaudata + Cyclestherida + Laevicaudata). The monotypic Cyclestherida is more closely related to the Cladocera, both together forming the Cladoceromorpha. The Spinicaudata (Leptestheriidae, Limnadiidae, and Cyzicidae) is well supported. Spinicaudata and Cladoceromorpha form a monophylum. The position of the Laevicaudata remains unclear but we find neither support for a sister group relationship to the Spinicaudata nor for a close relationship of Laevicaudata and Cladocera. Within the Cladocera, we favour the Gymnomera concept with the monotypic Haplopoda being the sister group to the monophyletic Onychopoda. The Ctenopoda seems to be the sister group to the Gymnomera, which contradicts the common view of a more basal position of the Ctenopoda.  相似文献   

2.
The evolutionary history of Branchiopoda (Crustacea) traditionally has attracted considerable interest due to the diversity of the group. Recently molecular methods have been applied to the study of branchiopod systematics with some success, but central questions, such as the phylogenetic position of Laevicaudata and Notostraca, and the intrinsic cladoceran phylogeny, remain unanswered. We examined the phylogeny of Branchiopoda by using two genes, mitochondrial 16S rRNA and nuclear 28S rRNA, which previously have seen little use for inferring branchiopod phylogeny. The number of ingroup taxa included was 42, representing all eight extant branchiopod orders. The data were analyzed using parsimony, maximum likelihood, and Bayesian Inference of phylogeny. Some higher-level taxa were supported in all analyses of the combined data: Phyllopoda, Cladoceromorpha, Cladocera, and Gymnomera. Other higher-level taxa were not supported in any trees: Diplostraca and Conchostraca. A case is made for a possible diplostracan ingroup position of Notostraca based on our data and on previously published molecular and morphological evidence. The recent discovery of a Devonian branchiopod, which is morphologically an intermediate between a notostracan and a 'conchostracan', is congruent with a diplostracan ancestry of Notostraca.  相似文献   

3.
Two significantly different types of mandibular gnathal edges present in extant Branchiopoda are documented by using SEM. The Anostraca, Spinicaudata, Cyclestherida, and certain Cladocera have a pars molaris that forms the entire gnathal edge. In these taxa, the pars molaris consists of comb-like projections originating from the primary surface of the gnathal edge. The comb teeth form the grinding surface at a second, more distal level. The central area of the molar surface is formed as a smooth plate, perforated by numerous small pores. These corresponding features are interpreted as homologous and indicate the homology of this type of gnathal edge. In comparison with the mandibular gnathal edges of other mandibulate taxa, the ellipsoid pars molaris forming the entire gnathal edge can be interpreted as an apomorphy of the Branchiopoda. Another type of gnathal edge is found in the Notostraca and Laevicaudata. It is characterized by several parallel-oriented teeth. Each of these teeth possesses a dorsal and a ventral cusp, both connected by a concave ridge. In addition, a smaller tooth-like structure, but showing more differences to the other teeth, is present anteriorly, and an incisor or canine-like tooth posteriorly. These similarities between laevicaudatan and notostracan gnathal edges are detailed enough to accept primary homology also of the second type of gnathal edge. Differences between the gnathal edges concern the distinct asymmetry of the mandibles in Notostraca and their symmetry in Laevicaudata. In comparison with the other type of gnathal edge, this type has to be interpreted as a synapomorphy of Notostraca and Laevicaudata. This is in conflict with other characters supporting a monophyletic Diplostraca, with the Laevicaudata as sister group to Spinicaudata + Cladoceromorpha.  相似文献   

4.
A computer-assisted cladistic analysis on morphological characters of the Diplostraca (Conchostraca and Cladocera) has been undertaken for the first time. The morphological information has been obtained from literature and transformed into 56 suitable characters. The analysis included 47 ingroup taxa, comprising five conchostracan taxa (four families of the Spinicaudata and the Laevicaudata) and 42 genera of the Cladocera. A detailed character discussion is presented which will be a useful working base for future phylogenetic studies on the group. A number of systematic groups were, with differing degrees of certainty, supported in all 218 equally short trees. These are the Diplostraca, Cladocera, Gymnomera (Onychopoda and Haplopoda), Onychopoda, Podonidae, Cercopagididae, Anomopoda, Daphniidae, Moininae, Scapholeberinae, Chydoridae, Chydorinae and Sididae. The Spinicaudata were only supported on some of the 218 equally short trees while no support was found for the Conchostraca. Two taxa—the Macrothricidae and Aloninae—were relatively strongly indicated to be paraphyletic. A suggested classificatory hierarchy, without indication of absolute rank, is presented.  相似文献   

5.
The adult male of Cyclestheria hislopi, sole member of the spinicaudate conchostracan clam shrimp family Cyclestheriidae and a species of potential phylogenetic importance, is described for the first time. Several previously unknown features are revealed. Among these are (1) the morphology of the dorsal organ, which is roughly similar in shape to the supposedly homologous structure in other clam shrimps but bears a relatively large, centrally located pore unique to the species; (2) an anterior cuticular pore presumably leading to the ‘internal’ space surrounding the compound eyes, and thereby homologous to the same pore in other clam shrimps and in the Notostraca; (3) the spination and setation of the antennae and thoracopods, and (4) the mature male first thoracopods (claspers). The male claspers are paired and essentially equal in size and shape on right and left sides of the body. The second pair of thoracopods are not modified as claspers, a situation different from all other spinicaudate families but shared (plesiomorphic we propose) with the laevicaudatans and most cladocerans. The claspers bear a field of special spine-like setae on the extremity of the ‘palm’; this setal type, previously unrecognized, is unique to Cyclestheria. The palm of the clasper also bears two palps (one very small), as in other conchostracan species (both laevicaudatans and spinicaudatans). The movable finger of the clasper, modified from the thoracopod endopod, bears a row of long setae along its outer extremity, also unique. Cyclestheria exhibits a mixture of characters, some unique and others typical of the Spinicaudata (Conchostraca). Cladoceran clasper types are briefly reviewed. as are the claspers in the Spinicaudata and Laevicaudata (Conchostraca). Morphology of the clasper of Cyclestheria shows typical spinicaudate characters. It is suggested that claspers on the first thoracopods may be a synapomorphy for the Conchostraca and the Cladocera. The possible role of Cyclestheria or a Cyclestheria-like ancestor in cladoceran phylogeny is briefly discussed in light of recent suggestions (Martin and Cash-Clark, 1995) of cladoceran monophyly and possible ancestral relationships with this genus. Some possibilities concerning the phylogenetic position of Cyclestheria–either as a sister group to the rest of the Spinicaudata or as a sister group to the Cladocera—are discussed.  相似文献   

6.
The larval development of "conchostracans" has received only scattered attention. Here I present the results of a study on the larval (naupliar) development and the metamorphosis of Lynceus brachyurus, a member of the bivalved branchiopod order the Laevicaudata. Lynceus brachyurus is the only species of the "Conchostraca" in Denmark. The phylogenetic position of the Laevicaudata has traditionally been a source of controversy, and this study does not solve the question completely. This work focuses on features potentially important for phylogeny. The general appearance of the larvae of L. brachyurus has been known for more than a century and a half, and some of its unique features include a large, larval dorsal shield; a huge, plate-like labrum; and a pair of immovable, horn-like antennules. However, many details relating to limb morphology, potentially important for phylogeny, have not been studied previously. Based on size categories, five or six larval stages can be recognized. The larvae approximately double their length and width during development (length: 230-520 microm). Most morphological features stay largely unchanged during development, but the antennal coxal masticatory spines are significant exceptions: they become bifid after one of the first molts. In all larval stages only the antennae and the mandibles actively move. In late naupliar stages the trunk limbs become visible as rows of laterally placed, undeveloped, and still immovable lobes. Swimming is performed by the antennae, whereas the mandibles appear to be involved mainly in feeding, as in other branchiopod larvae. The last naupliar stage undergoes a small metamorphosis to the first juvenile stage, the details of which in part were studied by following the premolt juvenile condition through the cuticle of the last stage nauplius. Among other changes there is a characteristic change in the shape and morphology of the univalved dorsal naupliar shield to a bivalved juvenile carapace. The general morphologies of the antennae and the mandibles are very similar to those of other branchiopod larvae and fall well within the "branchiopod naupliar feeding apparatus" recognized as a branchiopod synapomorphy by Olesen (2003), but some specific features shared with the larvae of other "conchostracans" are also identified. These special "conchostracan" features include: 1) a similar antennular setation; 2) a similar comb-like setulation of the bifid antennal coxal processes; and 3) mandibular palpsetae with setules condensed. In light of recent suggestions concerning branchiopod phylogeny (Cyclestheria as a sister group to the Cladocera), these similarities probably do not support a monophyletic "Conchostraca" but rather are symplesiomorphies of this taxon. A final decision must await a phylogenetic analysis of a more complete set of characters.  相似文献   

7.
We sequenced the V4 and V7 regions of the small-subunit ribosomal RNA (SSU rRNA) from 38 species of branchiopod crustaceans (e.g., Artemia, Daphnia, Triops) representing all eight extant orders. Ancestral large-bodied taxa in the orders Anostraca, Notostraca, Laevicaudata, and Spinicaudata (limnadiids and cyzicids) possess the typical secondary structure in these regions, whereas the spinicaudatan Cyclestheria and all of the cladocerans (Anomopoda, Ctenopoda, Onychopoda, and Haplopoda) possess three unique helices. Although the lengths and primary sequences of the distal ends of these helices are extremely variable, their locations, secondary structures, and primary sequences at the proximal end are conserved, indicating that they are homologous. This evidence supports the classical view that Cladocera is a monophyletic group and that the cyclestheriids are transitional between spinicaudatans and cladocerans. The single origin and persistence since the Permian of the unique cladoceran helices suggests that births and deaths of variable region helices have been rare. The broad range of sequence divergences observed among the cladoceran helices permitted us to make inferences about their evolution. Although their proximal ends are very GC-biased, there is a significant negative correlation between length and GC content due to an increasing proportion of U at their distal ends. Slippage-like processes occurring at unpaired nucleotides or bulges, which are very U-biased, are associated with both helix origin and runaway length expansion. The overall GC contents and lengths of V4 and V7 are highly correlated. More surprisingly, the lengths of these SSU rRNA variable regions are also highly correlated with the length of the large-subunit rRNA expansion segment, D2, indicating that mechanisms affecting length variation do so both across single genes and across genes in the rRNA gene family.  相似文献   

8.
The nauplius eye in Cyclestherida, Laevicaudata and Spinicaudata (previously collectively termed Conchostraca) consists of four cups of inverse sensory cells separated by a pigment layer and a tapetum layer. There are two lateral and two medial cups, a ventral medial cup and a posterior medial cup. The pigment and tapetum layers contain two different kinds of pigment granules, the inner pigment layer relatively large, dark (and electron dense) granules, and the outer tapetum layer light, reflective pigment granules. The presence of four cups and two different kinds of pigment granules are interpreted as autapomorphies of Phyllopoda. The position and shape of the nauplius eye in Spinicaudata is very distinct and herein interpreted as an autapomorphy of this taxon.Additional frontal eyes might be present dorsally or ventrally in varying proximity to the nauplius eye, but they have separate nerves from their sensory cells to the nauplius eye centre in the protocerebrum. Rhabdomeric structures are present in all these frontal eyes, evidencing their light sensitivity. In Lynceus biformis and L. tatei (Laevicaudata), two pairs of frontal eyes were found. In Cyclestheria hislopi (Cyclestherida), an unpaired ventral frontal eye is present. We did not find additional frontal eyes in Limnadopsis parvispinus and Caenestheriella sp. (Spinicaudata).  相似文献   

9.
This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu Buckland-Nicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters.  相似文献   

10.
《Zoology (Jena, Germany)》2014,117(3):207-215
Recent molecular studies have indicated a close relationship between Crustacea and Hexapoda and postulated their unification into the Pancrustacea/Tetraconata clade. Certain molecular analyses have also suggested that the crustacean lineage, which includes the Branchiopoda, might be the sister group of Hexapoda. We test this hypothesis by analyzing the structure of the ovary and the ultrastructural features of oogenesis in two branchiopod species, Cyzicus tetracerus and Lynceus brachyurus, representing two separate orders, Spinicaudata and Laevicaudata, respectively. The female gonads of these species have not been investigated before. Here, we demonstrate that in both studied species the ovarian follicles develop inside characteristic ovarian protrusions and comprise a germline cyst surrounded by a simple somatic (follicular) epithelium, supported by a thin basal lamina. Each germline cyst consists of one oocyte and three supporting nurse cells, and the oocyte differentiates relatively late during ovarian follicle development. The synthesis of oocyte reserve materials involves rough endoplasmic reticulum and Golgi complexes. The follicular cells are penetrated by a complex canal system and there is no external epithelial sheath covering the ovarian follicles. The structure of the ovary and the ultrastructural characteristics of oogenesis are not only remarkably similar in both Cyzicus and Lynceus, but also share morphological similarities with Notostraca as well as the basal hexapods Campodeina and Collembola. Possible phylogenetic implications of these findings are discussed.  相似文献   

11.
The first comprehensive analysis of higher‐level phylogeny of the order Hymenoptera is presented. The analysis includes representatives of all extant superfamilies, scored for 392 morphological characters, and sequence data for four loci (18S, 28S, COI and EF‐1α). Including three outgroup taxa, 111 terminals were analyzed. Relationships within symphytans (sawflies) and Apocrita are mostly resolved. Well supported relationships include: Xyeloidea is monophyletic, Cephoidea is the sister group of Siricoidea + [Xiphydrioidea + (Orussoidea + Apocrita)]; Anaxyelidae is included in the Siricoidea, and together they are the sister group of Xiphydrioidea + (Orussoidea + Apocrita); Orussoidea is the sister group of Apocrita, Apocrita is monophyletic; Evanioidea is monophyletic; Aculeata is the sister group of Evanioidea; Proctotrupomorpha is monophyletic; Ichneumonoidea is the sister group of Proctotrupomorpha; Platygastroidea is sister group to Cynipoidea, and together they are sister group to the remaining Proctotrupomorpha; Proctotrupoidea s. str. is monophyletic; Mymarommatoidea is the sister group of Chalcidoidea; Mymarommatoidea + Chalcidoidea + Diaprioidea is monophyletic. Weakly supported relationships include: Stephanoidea is the sister group of the remaining Apocrita; Diaprioidea is monophyletic; Ceraphronoidea is the sister group of Megalyroidea, which together form the sister group of [Trigonaloidea (Aculeata + Evanioidea)]. Aside from paraphyly of Vespoidea within Aculeata, all currently recognized superfamilies are supported as monophyletic. The diapriid subfamily Ismarinae is raised to family status, Ismaridae stat. nov. © The Will Henning Society 2011.  相似文献   

12.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

13.
The number of serotonin-expressing neurons in the nervous system of Euarthropoda is small and their neurites have a characteristic branching pattern. They can be identified individually, which provides a character well suited for phylogenetic analyses. In order to gain data that may be useful in the ongoing discussion on insect–crustacean relationships, we documented the pattern of serotonin immunoreactive neurons in the ventral nerve cord of four crustacean species: the phyllocarid malacostracan Nebalia bipes Fabricius, 1780 (Phyllocarida, Leptostraca) and the entomostracans Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca, Sarsostraca), Triops cancriformis Bosc, 1801 (Branchiopoda, Phyllopoda, Calmanostraca, Notostraca), and Leptestheria dahalacensis Rüppell, 1837 (Branchiopoda, Phyllopoda, Diplostraca, Conchostraca, Spinicaudata). In the entomostracan taxa investigated, the pattern of serotonergic cells in the thoracic hemiganglia comprises an anterior and a posterior bilateral pair of neurons with ipsi- and/or contralateral neurites. Comparing these data to existing information on serotonin-immunoreactivity in the ventral nerve cord of other malacostracan and entomostracan groups enabled us to determine several features of these thoracic neurons being part of the ground pattern of these taxa. Our data demonstrate that studying individually identifiable neurons in Arthropoda can be used to analyse the phylogeny of this taxon.  相似文献   

14.
Clam shrimps are freshwater branchiopod crustaceans which often present complicated breeding systems including asexual reproduction (parthenogenesis) and mixed mating systems (in androdioecious species both selfing and outcrossing occurs due to the co-presence of hermaphrodites and males). Reproductive patterns of Spinicaudata, which contains most clam shrimp species, have received much attention. Another group of clam shrimps, Laevicaudata, which holds a key position in branchiopod phylogeny, has practically not been studied. As a part of the mating process, males clasp to the carapace margin of the females with a pair (or two pairs) of anterior trunk limbs modified as claspers. Previous studies have shown that clasper morphology is important in a phylogenetic context, and that some parts of the claspers in Spinicaudata and Laevicaudata may have undergone a remarkable parallel evolution. Here we have used video microscopy to study aspects of the mating behaviour, egg extrusion, and fertilization in Lynceus brachyurus (Laevicaudata). It is shown that fertilization is likely to be external and that the peculiar tri-lobed lateral lamellae of female''s hind body assist in guiding the egg mass to the exopodal egg carriers where they are collected by their distal setation. The functional morphology of the male claspers was studied in detail by close-up video recordings. The movable “finger” of the clasper bends around the female''s carapace edge and serves to hold the female during mating. The larger palp grasps around the female carapace margin in a way very similar to the movable “finger”, possibly indirectly providing sensory input on the “finger” position. A brief comparative study of the claspers of a spinicaudatan clam shrimp showed both similarities and differences to the laevicaudatan claspers. The presence of two pairs of claspers in Spinicaudata seems to give males a better hold of the female which may play a role during extended mate guarding.  相似文献   

15.
Probing the relationships of the branchiopod crustaceans   总被引:4,自引:0,他引:4  
The Branchiopoda display extraordinary variation in body form, even within the morphologically diverse crustaceans. To fully understand the origin and evolution of these morphological reconfigurations, a robust phylogeny of the group is essential. To infer the affinities among branchiopods, we employed two approaches to taxon and gene sampling, presented new sequence data from three genes, incorporated previously published sequence data from three additional genes, and utilized comprehensive techniques of phylogeny reconstruction. The results provided support for a number of longstanding hypotheses concerning the relationships among the orders. For example, we obtained support for the Cladoceromorpha and Gymnomera, and favoured a unique arrangement of the cladoceran orders. A few affinities remain to be resolved, particularly at the base of the Phyllopoda and within the Anomopoda. However, the results suggest that increased gene sampling is recommended for future investigations of branchiopod systematics.  相似文献   

16.
Phylogenetic relationships within Collembola were determined through the cladistic analysis of 131 morphological characters and 67 exemplar taxa representing the major families of the group, with special emphasis on Poduromorpha. The results show that the order Poduromorpha is monophyletic and the sister group to the remaining Collembola, with Entomobryomorpha monophyletic and the sister group to the clade Neelipleona + Symphypleona. In Entomobryomorpha, Actaletidae is the sister group of the remaining families. In Poduromorpha, Tullbergiinae is monophyletic as well as Onychiurinae and the group Tetrodontophorinae + Onychiurinae which is the sister group of the remaining Poduromorpha; Tetrodontophorinae is paraphyletic; Onychiuridae is polyphyletic; Isotogastruridae is not an intermediate between Poduromorpha and Entomobryomorpha, it is the sister group of Tullbergiinae; Odontellidae is monophyletic and the sister group to the clade Neanuridae + Brachystomellidae; in Neanuridae, Frieseinae and the group Pseudachorutinae + Morulinae + Neanurinae are monophyletic; Morulinae is the sister group of Neanurinae; Pseudachorutinae is paraphyletic; Hypogastruridae is polyphyletic; Podura aquatica (Poduridae) is not 'primitive', it clusters with the genera Xenylla and Paraxenylla in Hypogastruridae. On the basis of these relationships and the position of the aquatic species, the most parsimonious hypothesis is a terrestrial edaphic origin for the springtails.  相似文献   

17.
A combined approach to the phylogeny of Cephalopoda (Mollusca)   总被引:2,自引:0,他引:2  
Cephalopoda represents a highly diverse group of molluscs, ranging in habitat from coastal regions to deep benthic waters. While cephalopods remain at the forefront of modern biology, in providing insight into fields such as neurobiology and population genetics, little is known about the relationships within the group. This study provides a comprehensive phylogenetic analysis of Cephalopoda (Mollusca) using a combination of molecular and morphological data. Four loci (three nuclear 18S rRNA, fragments of 28S rRNA and histone H3 and one mitochondrial cytochrome c oxidase subunit I) were combined with 101 morphological characters to test the relationships of 60 species of cephalopods, with emphasis within Decabrachia (squids and cuttlefishes). Individual and combined data sets were analyzed using the direct optimization method, with parsimony as the optimality criterion. Analyses were repeated for 12 different parameter sets accounting for a range of indel/change and transversion/transition cost ratios. Most analyses support the monophyly of Cephalopoda, Nautiloidea, Coleoidea and Decabrachia, however, the monophyly of Octobrachia was refuted due to the lack of support for a Cirroctopoda + Octopoda group. When analyzing all molecular evidence in combination and for total evidence analyses, Vampyromorpha formed the sister group to Decabrachia under the majority of parameters, while morphological data and some individual data sets supported a sister relationship between Vampyromorpha and Octobrachia. Within Decabrachia, a relationship between the sepioids Idiosepiida, Sepiida, Sepiolida and the teuthid Loliginidae was supported. Spirulida fell within the teuthid group in most analyses, further rendering Teuthida paraphyletic. Relationships within Decabrachia and specifically Oegopsida were found to be highly parameter‐dependent. © The Willi Hennig Society 2004.  相似文献   

18.
Cyclestheria hislopi is thought to be the only extant species of Cyclestherida. It is the sister taxon of all Cladocera and displays morphological characteristics intermediate of Spinicaudata and Cladocera. Using one mitochondrial (COI) and two nuclear (EF1α and 28S rRNA) markers, we tested the hypothesis that C. hislopi represents a single circumtropic species. South American (French Guiana), Asian (India, Indonesia, Singapore) and several Australian populations were included in our investigation. Phylogenetic and genetic distance analyses revealed remarkable intercontinental genetic differentiation (uncorrected p-distances COI > 13%, EF1α > 3% and 28S > 4%). Each continent was found to have at least one distinct Cyclestheria species, with Australia boasting four distinct main lineages which may be attributed to two to three species. The divergence of these species (constituting crown group Cyclestherida) was, on the basis of phylogenetic analyses of COI and EF1α combined with molecular clock estimates using several fossil branchiopod calibration points or a COI substitution rate of 1.4% per million years, dated to the Cretaceous. This was when the South American lineage split from the Asian–Australian lineage, with the latter diverging further in the Paleogene. Today’s circumtropic distribution of Cyclestheria may be best explained by a combination of Gondwana vicariance and later dispersal across Asia and Australia when the tectonic plates of the two continents drew closer in the early Miocene. The lack of morphological differentiation that has taken place in this taxon over such a long evolutionary period contrasts with the high level of differentiation and diversification observed in its sister taxon the Cladocera. Further insights into the evolution of Cyclestheria may help us to understand the evolutionary success of the Cladocera.  相似文献   

19.
Heinz Löffler 《Hydrobiologia》1993,264(3):169-174
The northwestern area of the Pannonian Lowland extends into Austria. The climatic and hydrologic attributes of this biographic region promote the existence of extremely astatic bodies water lacking any fish and hence the occurrence of Anostraca, Notostraca, Laevicaudata and Spinicaudata. Zoogeographical and ecological features as well as the extinction of species due to anthropogenic influence are described.Dedicated to Prof. Dr F. Berger, Lunz, Austria, on the occasion of his 90th birthdayDedicated to Prof. Dr F. Berger, Lunz, Austria, on the occasion of his 90th birthday  相似文献   

20.
Phylogenetic relationships within the Pentatomoidea are investigated through the coding and analysis of character data derived from morphology and DNA sequences. In total, 135 terminal taxa were investigated, representing most of the major family groups; 84 ingroup taxa are coded for 57 characters in a morphological matrix. As many as 3500 bp of DNA data are adduced for each of 52 terminal taxa, including 44 ingroup taxa, comprising the 18S rRNA, 16S rRNA, 28S rRNA, and COI gene regions. Character data are analysed separately and in the form of a total evidence analysis. Major conclusions of the phylogenetic analysis include: the concept of Urostylididae is restricted to that of earlier authors; the Saileriolinae is raised to family rank and treated as the sister group of all Pentatomoidea exclusive of Urostylididae sensu stricto; a broadly conceived Cydnidae, as recognized by Dolling, 1981 , is not supported; the placement of Thaumastellidae within the Pentatomoidea is affirmed and the taxon is recognized at family rank rather than as a subfamily of Cydnidae, although its exact phylogenetic position within the Pentatomoidea remains equivocal; the Parastrachiinae is treated as also including Dismegistus Amyot & Serville and placed within a broadly conceived Corimelaenidae, the latter group being treated at family rank; the family‐group taxa Dinidoridae and Tessaratomidae probably represent a monophyletic group, but the recognition of monophyletic subgroups will benefit from additional representation in the sequence data set; and the Lestoniidae is treated as the sister group of the Acanthosomatidae. The Acanthosomatidae and Scutelleridae are consistently recovered as monophyletic. The monophyly of the Pentatomidae appears unequivocal, inclusive of the Aphylinae and Cyrtocorinae, on the basis of morphology, the latter two taxa not being represented in the molecular data set. © The Willi Hennig Society 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号