首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of intracellular deoxyribonucleoside-triphosphate (dNTP) imbalance death of mouse mammary tumor FM3A cells was studied. When the cells were exposed to 5-fluorodeoxyuridine, deoxyadenosine, or 2-chlorodeoxyadenosine, dNTP pool imbalance resulted. The imbalance was followed by DNA double-strand breaks and subsequent cell death. The DNA double strand breaks were directly examined by means of orthogonal-field-alternation gel electrophoresis (OFAGE). Fragmented DNA band appeared to be approximately 100-200 kbp in size. The bases of 5'-termini in the DNA were cytosine and thymine. The imbalance induced endonuclease has been isolated by DEAE-agarose column chromatography.  相似文献   

2.
The mechanism of deoxyadenosine (dAdo)-induced death of mouse mammary tumor FM3A cells was studied. When the cells were exposed to dAdo at 3 mM, an imbalance of intracellular dNTP pool resulted: dATP concentration was elevated 100-fold and the dGTP concentration was reduced to less than 1% of the control values. The imbalance was followed by breakage of mature DNA. DNA double strand breaks were observed in the dAdo treated cells 12 hr after the administration. We assume that the double strand breaks play an important role in the process of the dAdo-mediated cell death, and that the intracellular dNTP imbalance is the trigger of these events.  相似文献   

3.
A simple agarose-gel apparatus has been developed that allows the separation of DNA molecules in the size range from 50 kb to well over 750 kb, the largest size for which size standards were available. The apparatus is based on the recent discovery that large DNA molecules are readily fractionated on agarose gels if they are alternately subjected to two approximately orthogonal electric fields. The switching time, which was on the order of 20-50 sec in our experiments, can be adjusted to optimize fractionation in a given size range. The resolution of the technique is sufficient to allow the fractionation of a sample of self-ligated lambda DNA into a ladder of approximately 15 bands, spaced at 50 kb intervals. We have applied the technique to the fractionation of yeast DNA into 11 distinct bands, several of which have been shown by DNA-DNA hybridization to hybridize uniquely to different chromosome-specific hybridization probes. In this paper, we describe the design of the apparatus, the electrophoretic protocol, and the sample-handling procedures that we have employed.  相似文献   

4.
This article describes the leading steps to develop an assay of DNA damage for the marine amphipod Gammarus locusta, using agarose gel electrophoresis (AGE). To test the sensitivity and feasibility of the AGE technique, X-ray assays were performed with naked DNA and with live amphipods. These positive controls demonstrated the effectiveness of the AGE technique to not only discriminate distinct levels of DNA strand breakage in a dose-dependent manner, but also to identify and quantify the type of strand breakage induced. It was also shown that it is possible to detect DNA damage using whole-body DNA extracts from amphipods. To explore the potential of this technique for use in ecotoxicological studies with amphipods, a 96-h waterborne-copper toxicity test was performed. Copper-induced DNA strand breakage was first observed after 24 h of exposure, and was recorded again at 96 h, at a copper concentration of 20 μg l -1 . The absence of strand breakage after 48 h of exposure is discussed in the light of the underlying mechanisms of copper toxicity and DNA repair. These studies demonstrated the feasibility of including DNA damage as a biomarker in ecotoxicological studies with amphipods. Information gained from the use of this biomarker would help with the interpretation of chronic toxicity tests and would contribute to our understanding of the impact of genotoxic insult in marine invertebrates, particularly crustaceans.  相似文献   

5.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   

6.
This article describes the leading steps to develop an assay of DNA damage for the marine amphipod Gammarus locusta, using agarose gel electrophoresis (AGE). To test the sensitivity and feasibility of the AGE technique, X-ray assays were performed with naked DNA and with live amphipods. These positive controls demonstrated the effectiveness of the AGE technique to not only discriminate distinct levels of DNA strand breakage in a dose-dependent manner, but also to identify and quantify the type of strand breakage induced. It was also shown that it is possible to detect DNA damage using whole-body DNA extracts from amphipods. To explore the potential of this technique for use in ecotoxicological studies with amphipods, a 96-h waterborne-copper toxicity test was performed. Copper-induced DNA strand breakage was first observed after 24 h of exposure, and was recorded again at 96 h, at a copper concentration of 20 microg l(-1). The absence of strand breakage after 48 h of exposure is discussed in the light of the underlying mechanisms of copper toxicity and DNA repair. These studies demonstrated the feasibility of including DNA damage as a biomarker in ecotoxicological studies with amphipods. Information gained from the use of this biomarker would help with the interpretation of chronic toxicity tests and would contribute to our understanding of the impact of genotoxic insult in marine invertebrates, particularly crustaceans.  相似文献   

7.
Abstract Attempts to study bacterial resistance to metal ions in broth media can be complicated by precipitation reactions. Precipitation from Luria-Bertani (LB) broth occurred at Cd2+ concentrations higher than 1.6 mM and was complete within about 10 min. The precipitate obtained after addition of 3 mM Cd2+ was analysed by elemental analysis. 1H and 31P nuclear magnetic resonance (NMR) spectroscopy. It consisted of cadmium phosphates together with organic material containing valine- and glutamate-rich polypeptides. Precipitation significantly reduced the levels of the essential trace elements Fe and Zn in the growth medium.  相似文献   

8.
The mechanism of intracellular deoxyribonucleotide triphosphates (dNTP) pool imbalance-induced cell death in mouse FM3A cells was studied. When the cells were treated with 1 microM 5-fluorodeoxyuridine (FdUrd), the imbalance of the cellular dNTP pool was induced. The imbalance was followed by DNA double stranded breaks and subsequent cell death. The endonuclease toward double stranded DNA has been found in a fraction of FdUrd treated cell lysate, and isolated using column chromatography. SDS-polyacrylamide gel electrophoresis showed a major protein species of approximate 45 kDa. The endonuclease was revealed, using electrophoretic separation in SDS-polyacrylamide gels containing DNA, by incubating the gels in buffer to remove SDS and to allow renaturation and enzyme activity.  相似文献   

9.
Nijmegen breakage syndrome, caused by mutations in the NBS1 gene, is an autosomal recessive chromosomal instability disorder characterized by cancer predisposition. Cells isolated from Nijmegen breakage syndrome patients display increased levels of spontaneous chromosome aberrations and sensitivity to ionizing radiation. Here, we have investigated DNA double strand break repair pathways of homologous recombination, including single strand annealing, and non-homologous end-joining in Nijmegen breakage syndrome patient cells. We used recently developed GFP-YFP-based plasmid substrates to measure the efficiency of DNA double strand break repair. Both single strand annealing and non-homologous end-joining processes were markedly impaired in NBS1-deficient cells, and repair proficiency was restored upon re-introduction of full length NBS1 cDNA. Despite the observed defects in the repair efficiency, no apparent differences in homologous recombination or non-homologous end-joining effector proteins RAD51, KU70, KU86, or DNA-PK(CS) were observed. Furthermore, comparative analysis of junction sequences of plasmids recovered from NBS1-deficient and NBS1-complemented cells revealed increased dependence on microhomology-mediated end-joining DNA repair process in NBS1-complemented cells.  相似文献   

10.
Although a routine procedure to detect mutagenesis by DNA strand breakage in animal cells, the single-cell gel electrophoresis (“comet”) assay is difficult to apply in plant material due to constraints in obtaining suitable nucleoids (formed by DNA trapped in the agarose matrix after the cell lysis process) in either quality or quantity. A suitable protocol is described for the first time to perform the comet assay in conifer somatic embryogenic cultures by determining total DNA strand breakage in protoplasts, after having failed to acquire nuclei by standard mechanical techniques. The results show that protoplasts obtained from embryogenic cultures of the Norway spruce (Picea abies) are suitable to be lysed and surveyed for DNA damage through the standard alkaline version of the comet assay. Several common comet metrics were compared and all were found suitable for analysis, with the percentage of DNA in the comets' tail (constituted by DNA fragments that migrated during electrophoresis), given by the proportion between tail fluorescence intensity and total nucleoid intensity, being simplest and the most sensitive to compare between control and hydrogen peroxide-treated cells. The established procedures may be useful, for instance, for a comparative evaluation of somatic embryogenesis protocols and selection of less damaging treatments for clonal propagation or for mutagenesis-related studies with conifer cell cultures.  相似文献   

11.
Tetracyclines (TCs) in combination with Cu(II) ions exhibited significant DNA damaging potential vis a vis tetracyclines per se. Interaction of tetracyclines with DNA resulted in alkylation at N-7 and N-3 positions of adenine and guanine bases, and caused destabilization of DNA secondary structure. Significant release of acid-soluble nucleotides from tetracycline-modified DNA upon incubation with S(1) nuclease ascertained the formation of single stranded regions in the DNA. Also, the treatment of tetracycline-modified DNA with 0.1 and 0.5M NaOH resulted in 62 and 76% hydrolysis compared to untreated control. Comparative alkaline hydrolysis of DNA modified with tetracycline derivatives showed differential DNA damaging ability in the order as DOTC > DMTC > TC > OTC > CTC. Addition of Cu(II) invariably augmented the extent of tetracycline-induced DNA damage. The alkaline unwinding assay clearly demonstrated the formation of approximately six strand breaks per unit DNA at 1:10 DNA nucleotide/TC molar ratio in the presence of 0.1mM Cu(II) ions. At a similar Cu(II) concentration, a progressive transformation of covalently closed circular (CCC) (form-I) plasmid pBR322 DNA to forms-II and -III was noticed with increasing tetracycline concentrations. The results obtained with the free-radical quenchers viz. mannitol, thiourea, sodium benzoate and superoxide dismutase (SOD) suggested the involvement of reactive oxygen species in the DNA strand breakage. It is concluded that the tetracycline-Cu(II)-induced DNA damage occurs due to (i) significant binding of tetracycline and Cu(II) with DNA, (ii) methyl group transfer from tetracycline to the putative sites on nitrogenous bases, and (iii) metal ion catalyzed free-radical generation in close vicinity of DNA backbone upon tetracycline photosensitization. Albeit, the DNA alkylation and strand cleavage are repairable lesions, but any defect in the critical repair pathway may augment the damage accumulation and mutagenesis.  相似文献   

12.
A new method for detection of varicella-zoster virus (VZV) DNA using field-inversion gel electrophoresis (FIGE) was devised. VZV-genomic DNA could be differentiated from the host cell DNA of human embryonic lung (HEL) fibroblasts infected with VZV under electrophoretic conditions allowing resolution of linear and double-stranded DNAs in the 49-230 kilobase pairs (Kb) range. The detection of VZV-genomic DNA from infected HEL cells was successful regardless of whether the VZV was a laboratory strain, live vaccine strain, or fresh isolate. Under the same electrophoretic conditions, DNA of VZV-infected HEL cells could be clearly differentiated from DNA obtained from HEL cells infected with herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), or human cytomegalovirus (HCMV). Furthermore, VZV genomic DNA could be detected from as small a sample as 1.9 x 10(4) VZV-infected HEL cells. Finally, we could detect VZV genomic DNA from 10 samples of vesicle tissue (blister lids, each about 1-4 mm2) and one sample of vesicle fluid (about 5 microliters) obtained from patients diagnosed as having herpes-zoster. The results of this study indicate that FIGE is a simple and promising method for the detection of VZV from clinical materials as well as infected in vitro cultured cells.  相似文献   

13.
Repetitive sequences in DNA molecules, some of which are palindromic, tend to form stable cruciforms. These are frequently located in promoter regions of a specific operon and origin of replication. Temperature gradient gel electrophoresis can be used to distinguish among various supercoiled DNA topoisomers and to ascertain whether or not the cruciform motif has been extruded. In the current study, this technique is implemented for the first time to address the role of temperature in cruciform extrusion from plasmids.  相似文献   

14.
A simple gel technique is described for the detection of large, covalently closed, circular DNA molecules in eucaryotic cells. The procedure is based on the electrophoretic technique of Eckhardt (T. Eckhardt, Plasmid 1:584-588, 1978) for detecting bacterial plasmids and has been modified for the detection of circular and linear extrachromosomal herpesvirus genomes in mammalian cells. Gentle lysis of suspended cells in the well of an agarose gel followed by high-voltage electrophoresis allows separation of extrachromosomal DNA from the bulk of cellular DNA. Circular viral DNA from cells which carry the genomes of Epstein-Barr virus, Herpesvirus saimiri, and Herpesvirus ateles can be detected in these gels as sharp bands which comigrate with bacterial plasmid DNA of 208 kilobases. Epstein-Barr virus producer cell lines also show a sharp band of linear 160-kilobase DNA. The kinetics of the appearance of this linear band after induction of viral replication after temperature shift parallels the known kinetics of Epstein-Barr virus production in these cell lines. Hybridization of DNA after transfer to filters shows that the circular and linear DNA bands are virus specific and that as little as 0.25 Epstein-Barr virus genome per cell can be detected. The technique is simple, rapid, and sensitive and requires relatively low amounts of cells (0.5 X 10(6) to 2.5 X 10(6)).  相似文献   

15.
Thymidylate synthase-negative mutants of cultured mouse cells were immediately committed to cell death upon thymidine deprivation, especially when the cells were synchronized in the S phase. Thymidylate deprivation induced single strand breaks in chromosome-size DNA strands, as measured by alkaline sucrose gradient sedimentation, giving rise to two peaks, one with large and the other with small fragments, the latter about the size of T4 DNA. An increase in the small DNA fragments paralleled that of thymineless death. Thymidine deprivation also produced double strand DNA fragments as determined by a method of neutral filter elution, and their extent paralleled that of cell death. Double-stranded DNA eluted through the filter sedimented as a single peak both in a neutral and in an alkaline sucrose gradient that coincided with that of the above small DNA fragments. Therefore, the strand breaks seemed to occur in some defined portions of the genome and in a specific manner compared to breaks induced by x-rays, which occurred rather randomly. Cycloheximide blocked both thymineless death and the production of the small DNA fragments. The strand breaks induced by thymidine starvation were not repaired but instead advanced on subsequent incubation of the cells in growth medium containing thymidine.  相似文献   

16.
Amounts of DNA strand breaks were estimated by the proportion of cells without tails (PCWT) and the average lengths of tail momentum (ALTM) in comet images of tissue cells of senescence-accelerated prone (SAMP1) mouse and senescence-accelerated resistant (SAMR1) mouse. The PCWT and ALTM of brain cells from SAMR1 were unchanged from 4 to 15 months of age. In the case of SAMP1 brain cells, the PCWT decreased and the ALTM increased in an age-related manner from 8 to 15 months of age. In the cases of liver and kidney, the PCWT and the ALTM of both SAMP1 and SAMR1 cells showed constant values from 4 to 15 months of ages.  相似文献   

17.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

18.
The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double strand breaks. To assess the possibility that Artemis acts on oxidatively modified double strand break termini, its activity toward model DNA substrates, bearing either 3'-hydroxyl or 3'-phosphoglycolate moieties, was examined. A 3'-phosphoglycolate had little effect on Artemis-mediated trimming of long 3' overhangs (> or =9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3'-phosphoglycolates on overhangs of 4-5 bases promoted Artemis-mediated removal of a single 3'-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3' overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was completely dependent on DNA-dependent protein kinase and ATP and was largely dependent on Ku, which markedly stimulated Artemis activity toward all 3' overhangs. Together, these data suggest that efficient Artemis-mediated cleavage of 3' overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3' to the cleavage site, as well as 2 unpaired nucleotides 5' to the cleavage site. Shorter 3'-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis but much more slowly. Consistent with a role for Artemis in repair of terminally blocked double strand breaks in vivo, human cells lacking Artemis exhibited hypersensitivity to x-rays, bleomycin, and neocarzinostatin, which all induce 3'-phosphoglycolate-terminated double strand breaks.  相似文献   

19.
20.
Covalently closed circular double-stranded DNA (CC) of native plasmids was used to determine the yield of single strand breaks (ssb) and double strand breaks (dsb) as a consequence of X-irradiation. One ssb transforms DNA of the CC form to the nicked circular form (NC), whereas one dsb produced either directly or from random coincidence of single strand breaks transforms DNA of the CC as well as of the NC form to linear DNA molecules (LI form). Plasmids with more than one dsb are cleaved to linear fragments. DNA (30-800 micrograms/ml) was irradiated in air-saturated sodium phosphate buffer. The different forms of DNA were separated by gel electrophoresis and their amounts measured fluorometrically using ethidium bromide. Large linear DNA fragments with the same electrophoretic mobility as the LI form were considered by using a curve-fitting procedure. From the quantitative changes of each conformation D37 values of ssb and dsb were calculated as a function of the DNA concentration. Finally G-values were calculated by competition plots. The following yields were determined: Gssb 3.4 X 10E-8 molJ-1, and Gdsb 3.3 X 10E-10 molJ-1. Gdsb refers only to those dsb produced directly. Yields are related to strand breaks without further treatment by heat or alkali.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号