首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of the cellular prion protein (PrP(c)) has been shown to be crucial for the development of transmissible spongiform encephalopathies and for the accumulation of the disease-associated conformer (PrP(sc)) in the brain and other tissues. One of the emerging hypotheses is that the conversion phenomenon could take place at the site where the infectious agent meets PrP(c). In this work we have studied whether PrP(c), a protein found predominantly in neurons, could also exist in pancreatic endocrine cells since neuroectoderm-derived cells and pancreatic islet cells share a large number of similarities. For this purpose we have examined the expression of PrP(c) in a series of fetal and postnatal bovine pancreatic tissue by immunohistochemistry and RT-PCR. Using immunostained serial sections and specific antibodies against bovine PrP(c), insulin, glucagon, somatostatin, chromogranin A and chromogranin B we found that PrP(c) is highly expressed in all endocrine cells of fetal and adult pancreatic islets with a particular strong expression in A-cells. Moreover it became evident that the PrP(c) gene-neighbour chromogranin B as well as chromogranin A are coexpressed together with PrP(c). The selective expression of PrP(c) in the bovine endocrine pancreas is of particular importance regarding possible iatrogenic transmission routes and demonstrates also that bovine pancreatic islet cells could represent an interesting model to study the control of PrP-gene expression.  相似文献   

2.
地西泮结合抑制因子(Diazepam binding inhibitor,DBI)与酰基辅酶A具有高亲和力,在动物组织中广泛存在,与脂肪酸代谢、类固醇激素合成密切相关。为研究DBI基因的分子特征及该基因在乳腺发育中的作用,对牦牛DBI基因编码区进行克隆,进行生物信息学分析;采用实时荧光定量PCR (Quantitative real-time PCR,qPCR)、蛋白免疫印迹技术(Western blotting,WB)和免疫组织化学(Immunohistochemistry,IHC)方法对牦牛泌乳前期、泌乳期和干乳期的乳腺组织中DBI的相对表达量和表达部位进行研究。DBI序列分析显示:牦牛DBI基因编码区序列长264 bp,编码87个氨基酸残基,与牛的同源性高达99.62%;qPCR数据表明:牦牛泌乳前期乳腺组织中DBI基因的相对表达量显著高于泌乳期和干乳期(P< 0.05);WB结果显示:牦牛泌乳前期乳腺组织中DBI蛋白的表达量最高,干乳期次之,泌乳期最低(P< 0.05);IHC结果表明:不同发育时期的牦牛乳腺组织中DBI的表达部位并无明显差异,主要表达于乳腺腺泡上皮细胞、导管上皮细胞及小叶间质细胞。DBI在不同发育时期牦牛乳腺组织中的相对表达量具有明显差异(P< 0.05),揭示DBI可能参与牦牛乳腺发育的过程,这为进一步探究DBI基因在生物体中的作用提供相应的理论参考。  相似文献   

3.
4.
5.
We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the ultimobranchial gland of the adult bullfrog using immunohistochemical (IHC) and in situ hybridization (ISH) techniques. In the ultimobranchial gland, PC1-immunoreactive cells were columnar, and were present in the follicular epithelium. When serial sections were immunostained with anti-calcitonin, anti-CGRP, anti-PC1, and anti-PC2 sera, PC1 was found only in the calcitonin/CGRP-producing cells. No PC2-immunopositive cells were detected. In the ISH, PC1 mRNA-positive cells were detected in the follicle cells in the ultimobranchial gland. No PC2 mRNA-positive cells were detected. RT-PCR revealed expression of the mRNAs of PC1 and the PC2 in the ultimobranchial gland. However, very little of the PC2 mRNA is probably translated because no PC2 protein was detected either by IHC staining or by Western blotting analysis. We conclude that the main prohormone convertase that is involved in the proteolytic cleavage of procalcitonin in the bullfrog is PC1.  相似文献   

6.
Leptin and its receptors have been shown to be expressed in several tissues thus suggesting that this protein might be effective not only at the CNS level, but also peripherically. We demonstrated by RT-PCR analysis that leptin and its long isoform receptor are expressed in the mouse mammary epithelial cell line HC11, an in vitro cell model considered suitable to study the regulation of the functional development of the mammary epithelium. Furthermore, leptin secretion by HC11 cells was demonstrated by heterologous ELISA. Neither mRNA expression nor protein secretion changed throughout the different phases of differentiation of the cell line. Receptor mRNA was not modified when cells were induced to express beta-casein. High concentrations of leptin (between 1.5 and 15 microM) significantly (p<0.05) reduced cell growth as measured by MTT test. HC11 cells were transfected with pbetacCAT, a chimeric rat-beta casein gene promoter-CAT gene construct and CAT ELISA was used to determine gene expression. Leptin, from 1.5 nM to 15 microM, was shown to positively (p<0.05) influence beta-casein expression both in the presence or in the absence of prolactin. These data provide evidence that leptin, through its receptor, may be an important mediator in regulating mammary gland growth and development.  相似文献   

7.
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.  相似文献   

8.
9.
Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  相似文献   

10.
Pten作为抑癌基因,参与调控细胞生长、粘附、凋亡以及其它细胞活动.目前,国内外关于Pten在奶牛乳腺发育过程中表达及调节的研究鲜有报道.为了揭示Pten的表达与奶牛乳腺发育与泌乳之间的关系,本研究应用qRT-PCR技术检测Pten在不同泌乳时期和不同乳品质的奶牛乳腺组织中的表达差异,进而应用脂质体转染方法,通过siRNA介导的RNA干扰技术改变Pten基因在奶牛乳腺上皮细胞中的表达量,CASY法检测细胞活力,用ELISA试剂盒检测细胞分泌β-酪蛋白的含量,采用qRT-PCR、Western 印迹等技术检测Pten对奶牛乳腺上皮细胞中乳蛋白相关信号通路基因表达的影响.结果显示,泌乳期高乳品质奶牛乳腺组织中Pten表达水平显著低于泌乳期低乳品质及干乳期奶牛;Pten基因沉寂后,细胞活力提高,β-酪蛋白质量浓度增加,CSN2、AKT、MTOR、STAT5表达量增加.研究表明,Pten可通过抑制细胞活力和乳蛋白分泌而影响泌乳.  相似文献   

11.
We have previously shown that Annexin A8 (ANXA8) is strongly associated with the basal-like subgroup of breast cancers, including BRCA1-associated breast cancers, and poor prognosis; while in the mouse mammary gland AnxA8 mRNA is expressed in low-proliferative isolated pubertal mouse mammary ductal epithelium and after enforced involution, but not in isolated highly proliferative terminal end buds (TEB) or during pregnancy. To better understand ANXA8’s association with this breast cancer subgroup we established ANXA8’s cellular distribution in the mammary gland and ANXA8’s effect on cell proliferation. We show that ANXA8 expression in the mouse mammary gland was strong during pre-puberty before the expansion of the rudimentary ductal network and was limited to a distinct subpopulation of ductal luminal epithelial cells but was not detected in TEB or in alveoli during pregnancy. Similarly, during late involution its expression was found in the surviving ductal epithelium, but not in the apoptotic alveoli. Double-immunofluorescence (IF) showed that ANXA8 positive (+ve) cells were ER-alpha negative (−ve) and mostly quiescent, as defined by lack of Ki67 expression during puberty and mid-pregnancy, but not terminally differentiated with ∼15% of ANXA8 +ve cells re-entering the cell cycle at the start of pregnancy (day 4.5). RT-PCR on RNA from FACS-sorted cells and double-IF showed that ANXA8+ve cells were a subpopulation of c-kit +ve luminal progenitor cells, which have recently been identified as the cells of origin of basal-like breast cancers. Over expression of ANXA8 in the mammary epithelial cell line Kim-2 led to a G0/G1 arrest and suppressed Ki67 expression, indicating cell cycle exit. Our data therefore identify ANXA8 as a potential mediator of quiescence in the normal mouse mammary ductal epithelium, while its expression in basal-like breast cancers may be linked to ANXA8’s association with their specific cells of origin.  相似文献   

12.
13.
Detailed analysis of protein tyrosine phosphatase (PTP) expression in mouse mammary gland and mammary epithelial cells using a set of degenerate primers corresponding to the PTP core domain sequence revealed the presence of 16 different receptor-type and intracellular PTPs. Northern blot and RT-PCR analyses revealed that some PTPs were up-regulated during gestation, suggesting that these enzymes are involved in development of mammary gland. However, expression of most PTPs dramatically decreased during lactation, whereas the beta-casein gene expression was increased and remained at a high level. At the involution stage after weaning, most PTPs were up-regulated and their expression returned almost to the virgin level. Such up-regulation was also induced by forced weaning in lactating mother mice. These results suggest the possible contribution of PTPs to the development, involution, and remodeling of mammary gland and their possible inhibitory action on maintaining high expression of milk genes during lactation.  相似文献   

14.
Mammary gland development is controlled by several genes. Although miRNAs have been implicated in mammary gland function, the mechanism by which miR-486 regulates mammary gland development and lactation remains unclear. We investigated miR-486 expression in cow mammary gland using qRT-PCR and ISH and show that miR-486 expression was higher during the high-quality lactation period. We found that miR-486 targets phosphoinositide signaling in the cow mammary gland by directly downregulating PTEN gene expression and by altering the expression of downstream genes that are important for the function of the mammary gland, such as AKT, mTOR. We analyzed the effect of β-casein, lactose and triglyceride secretion in bovine mammary gland epithelial cells (BMECs) transfected by an inhibitor and by mimics of miR-486. Our results identify miR-486 as a downstream regulator of PTEN that is required for the development of the cow mammary gland.  相似文献   

15.
16.
To understand molecular mechanisms that regulate mammary gland involution, we identified involution-induced cDNA clones by suppression subtractive hybridization methods. Nucleotide sequencing of a clone revealed that it was 97% identical to Ca(2+)-sensitive chloride channel 1 (mCLCA1) gene that has been identified in lung tissue. We concluded that our clone was derived from different gene with mCLCA1 and named it mCLCA2. We confirmed that expression of mCLCA2 gene was predominant in mammary gland while mCLCA1 mRNA was mainly detected in lung tissues by RT-PCR. Northern analysis showed that the mCLCA2 gene was induced at involution phase compared to pregnant and lactating phases of mammary gland. Under serum starvation, HC11 mammary epithelial cells showed DNA fragmentation and induction of mCLCA2 expression.  相似文献   

17.
To understand the molecular mechanism of mammary gland involution we identified involution-induced clones by differential screening of a mouse mammary gland cDNA library. Characterization of clones by sequencing and Northern analysis showed that expression of 24p3 was induced during involution of the mammary gland. RNA in situ hybridization showed that it was mainly expressed in the secretory epithelial cells surrounding the lumen of the mammary gland alveoli. Induction of 24p3 was also observed in apoptotic HC11 mammary epithelial cells under serum starvation. In these cells, dexamethasone increased 24p3 gene expression four-fold. Transient expression of 24p3 increased the percentage of apoptotic cells 3- to 4-fold over a period of 3 days after transfection. This study provides evidence that overexpression of 24p3 gene can induce apoptosis of mammary epithelial cells.  相似文献   

18.
This study is the first to examine the expression of the 14 monocarboxylate transporter genes (MCT1–MCT14) in the mammary gland of mammals. RT-PCR, Western blot, immunohistochemistry, and immunofluorescence confocal laser microscopy were applied in a comprehensive approach to assess the expression and cellular localization of MCTs in the mammary gland of lactating cattle. RT-PCR revealed the existence of nine MCT isoforms, namely MCT1, MCT2, MCT3, MCT4, MCT5, MCT8, MCT10, MCT13, and MCT14 in cow mammary gland. The amplified cDNA segments were confirmed by sequence analysis and deposited in the GenBank. Using the commercially available antibodies against MCT1–MCT8, Western blotting verified the protein expression of MCT1, MCT2, MCT3, MCT4, MCT5, and MCT8 in the cow mammary gland. The precise cellular localization of the identified MCT proteins showed that both MCT1 and MCT2 were basolaterally localized on the cow mammary alveolar epithelial cells. In contrast, MCT4 protein signal was expressed on the apical membrane of these alveolar epithelia. MCT8, however, was predominantly localized on the basolateral membranes of the lactocytes, along with its weak labeling on the apical membrane of the same cells. No immunoreactive staining for MCT3 and MCT5 proteins could be detected histochemically in lactating bovine mammary tissue. Additionally, we proved the colocalization of CD147 with both MCT1 and MCT4 on the boundaries of the cow mammary alveolar epithelia. The existence and localization pattern of MCT genes in the mammary gland of lactating cows suggest their possible involvement in the transport of essential elements required for milk synthesis and secretion.  相似文献   

19.
目的 :构建tPA乳腺定位表达载体 ,使其在牛乳汁中高效表达 ,观察目的基因表达的规律及其影响因素 ,为建立新型牛乳腺生物反应器提供理论基础。方法 :RT-PCR法克隆目的基因 ,通过酶切、连接、分离、纯化等方法构建含tPA-cDNA的乳腺定位表达载体 ;采用乳腺注射法将融合基因转入小鼠及牛的乳腺组织中。结果 :乳腺注射外源基因后 ,tPA可在小鼠和牛的乳汁中表达。结论 :乳腺注射法可使目的基因在乳腺组织中稳定地表达较长的时间 ,其表达量与显微注射法没有明显的差异 ,表明外源基因的表达不受转基因方法的影响。但tPA在牛乳汁中的表达量明显高于小鼠的表达量 ,提示不同动物的乳蛋白调控系统有一定的差异 ,可能受着不同的因素或调控系统的影响。  相似文献   

20.
The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号