首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of multiple bromoperoxidases in extracts of Streptomyces griseus Tü 6 was detected. The enzyme pattern varied with the age of the culture. A haem-type bromoperoxidase (BPO 2) was always present. Additionally three nonhaem-type bromoperoxidases (BPO 1a, 1b and 3) were detected and purified to homogeneity. The Mr of non-denatured BPO 1a was 70,000 +/- 10,000 and those of BPO 1b and 3 were 90,000 +/- 5000. BPO 1a and 1b were dimers with subunit Mr values of 34,000 and 43,000, respectively. BPO 3 was a trimer with a subunit Mr of 31,000. The enzymes differed in their isoelectric points, heat stability, and Km values. In immunodiffusion experiments BPO 1a and 3 showed partial identity with the nonhaem-type bromoperoxidase from Streptomyces aureofaciens. The nonhaem-type BPO 1a, 1b and 3 had neither peroxidase nor catalase activity.  相似文献   

2.
A bromoperoxidase gene was cloned from Streptomyces aureofaciens Tü24 into Streptomyces lividans TK64 by using the promoter-probe vector pIJ486. Subcloning of DNA from the original, unstable clone allowed the gene to be localized to a 1.7-kilobase (kb) fragment of DNA. Southern blotting showed that the cloned 1.7-kb insert hybridized to a 4.3-kb fragment in an SstI digest of S. aureofaciens Tü24 total DNA. The 1.7-kb insert was shown to code for a protein with the electrophoretic properties of the subunits of the nonheme bromoperoxidase isolated from S. aureofaciens Tü24. The protein produced by S. lividans TK64 transformed with pHM621, which contained an 8.0-kb insert, was shown to be identical to the S. aureofaciens Tü24 bromoperoxidase in terms of its electrophoretic mobility on denaturing and nondenaturing polyacrylamide gels and its NH2-terminal amino acid sequence. The bromoperoxidase was overproduced (up to 180 times) by S. lividans TK64 containing pHM621. Based on the heat stability of the S. aureofaciens Tü24 bromoperoxidase, a new and simple purification procedure with very high yields was developed.  相似文献   

3.
A bromoperoxidase gene (bpoT), recently cloned from Streptomyces aureofaciens Tü24, was used as a probe in Southern blot hybridization of total DNA from S. aureofaciens ATCC 10762. A single SstI fragment of 5.4 kb was detected, which was cloned via an enriched gene library into Escherichia coli. The functional bromoperoxidase gene was located on a 2.1 kb BamHI-HindIII fragment by subcloning into S. lividans TK64, using the multicopy plasmid pIJ486. The enzyme was overproduced in S. lividans TK64 (up to 30,000 times compared to S. aureofaciens ATCC 10762) and showed the same electrophoretic and immunological properties as the bromoperoxidase BPO-A2 purified from S. aureofaciens ATCC 10762. DNA sequence analysis revealed an open reading frame encoding a predicted polypeptide with the same M(r) and N-terminal amino acid sequence as the purified subunit of BPO-A2.  相似文献   

4.
The first bacterial nonheme type bromoperoxidase has been purified to homogeneity from the chlorotetracycline-producing actinomycete Streptomyces aureofaciens Tü 24. Purification was accomplished by (NH4)2SO4 precipitation, DEAE-cellulose chromatography at different pH-values, and molecular sieve chromatography. The purified enzyme has a molecular mass of 90 to 95 kDa based on ultracentrifugation and gel filtration. The enzyme is composed of three subunits of identical molecular mass (m = 31 kDa). Bromoperoxidase catalyses the bromination of monochlorodimedone, but not its chlorination, and has no peroxidase or catalase activity. The optimum pH is 4.5. The enzyme does not exhibit an absorption peak in the Soret region of the optical spectrum. X-ray fluorescence spectroscopy revealed that the enzyme does not contain any metals in equimolar amounts. Bromoperoxidase is stable in a pH range from pH 4.0 to pH 10.0 at 4 degrees C for weeks and does not loose any activity when incubated at 80 degrees C for 2 h.  相似文献   

5.
For the first time, a halogenating enzyme which is not known to produce halogenated metabolites has been isolated from a bacterial strain. The gene encoding the nonheme chloroperoxidase (CPO-L) from Streptomyces lividans TK64 was cloned, and its gene product was characterized. S. lividans TK64 produced only very small amounts of the enzyme. After cloning of the gene into Streptomyces aureofaciens Tü24-88, the enzyme was overexpressed up to 3,000-fold. Based on the overexpression, a simple purification procedure using acid precipitation and hydrophobic interaction chromatography was developed. Thus, 54 mg of homogeneous CPO-L could be obtained from 27 g (wet weight) of mycelium. The native enzyme has a molecular weight of 64,000 and consists of two identical subunits. The enzyme does not exhibit an absorption peak in the Soret region of the optical spectrum. X-ray fluorescence spectroscopy revealed that the enzyme does not contain any metal ions in equimolar amounts. CPO-L showed cross-reaction with antibodies raised against the nonheme chloroperoxidase from Pseudomonas pyrrocinia but not with antibodies raised against CPO-T from S. aureofaciens Tü24. CPO-L exhibits substrate specificity only for chlorination, not for bromination. Therefore, monochlorodimedone is only brominated by CPO-L, whereas indole is brominated and chlorinated. The functional chloroperoxidase gene was located on a 1.9-kb SalI DNA fragment. DNA sequence analysis revealed an open reading frame encoding a predicted polypeptide of 276 amino acids. The overall identity of the amino acid sequence to that of chloroperoxidase from P. pyrrocinia was 71%, whereas that to bromoperoxidase BPO-A2 from S. aureofaciens ATCC 10762 was only 42%.  相似文献   

6.
A bromoperoxidase was isolated from the chlortetracycline-producing actinomycete, Streptomyces aureofaciens. This enzyme catalysed bromination and iodination, but surprisingly did not catalyse chlorination. The enzyme had an acidic pH optimum (pH 4.3) and the isoelectric point was 3.5. The Km for bromide was 20 mM and the Km for H2O2 was as high as 8 mM. The bromoperoxidase did not contain haem, since it was not inhibited by azide or cyanide. Excess bromide or chloride had no effect on its brominating activity; however, fluoride strongly inhibited the bromoperoxidase (Ki = 20 microM). On the basis of gel electrophoresis in the absence and presence of sodium dodecyl sulphate, the molecular mass of the enzyme was 65 kDa and it consisted of two subunits of 32 kDa each. The bromoperoxidase was remarkably thermostable.  相似文献   

7.
Purification of bromoperoxidase from Pseudomonas aureofaciens.   总被引:2,自引:2,他引:0       下载免费PDF全文
A Bromoperoxidase has been isolated and purified from Pseudomonas aureofaciens ATCC 15926 mutant strain ACN. The purified enzyme was homogeneous as determined by polyacrylamide gel electrophoresis and ultracentrifugation. This bromoperoxidase can utilize bromide ions in the presence of hydrogen peroxide and a halogen acceptor for the catalytic formation of carbon-halogen bonds. The homogeneous enzyme also has peroxidase and catalase activity. Based on the results from gel filtration and ultracentrifugation, the molecular weight of this procaryotic bromoperoxidase is 155,000 to 158,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band having the mobility of a 77,000-molecular-weight species. We thus conclude that this bromoperoxidase exists in solution as a dimeric species. The heme prosthetic group of bromoperoxidase is ferriprotoporphyrin IX. The spectral properties of the native and reduced enzyme are reported. This bromoperoxidase is the first halogenating enzyme purified from procaryotic sources.  相似文献   

8.
Polyclonal, monospecific antibodies were produced against the two subunits (Mr 62,000, and Mr 31,000), isolated from the membrane-bound hydrogenase of Alcaligenes eutrophus H16. The antibodies (IgG fractions) were purified from crude sera by Protein A-Sepharose CL-4B chromatography. By double immunodiffusion assays and tandem-crossed immunoelectrophoresis the large and the small subunit were demonstrated not to be immunologically related. Immunological comparison of these subunits with the four non-identical subunits (Mr 63,000, 56,000, 30,000 and 26,000) of the NAD-linked, soluble hydrogenase from A. eutrophus H16 showed that the subunits of the membrane-bound hydrogenase did not cross-react with any of the antibodies raised against the four subunits of the NAD-linked enzyme and that, vice versa, none of these four subunits cross-reacted with antibodies raised against the two subunits of the membrane-bound hydrogenase. This means that A. eutrophus H16 contains altogether six non-identical immunologically unrelated hydrogenase polypeptides. The membrane-bound hydrogenases were isolated and purified from various aerobic H2-oxidizing bacteria: A. eutrophus H16, A. eutrophus type strain, A. eutrophus CH34, A. eutrophus Z1, A. hydrogenophilus, Paracoccus denitrificans and strain Cd2/01. All these proteins resembled each other and each consisted of two non-identical polypeptides. A complete separation of these subunits was achieved at high-yield by preparative FPLC gel filtration on three Superose 12 columns connected in series, using SDS and DTT-containing sodium phosphate buffer (pH 7.0). The small subunits of these enzymes turned out to be immunologically closely related to each other; they were either identical or almost identical. The large subunits were also related, but less pronounced. Only the large subunits from Z1 and type strain reacted fully identical with the H16 subunit. Of the two isolated, homogeneous subunits of the membrane-bound hydrogenase from A. eutrophus H16, the amino acid compositions and the NH2-terminal sequences have been determined. The results confirmed the diversity of the large and the small subunit. Furthermore, for comparison also the NH2-terminal sequences of the two subunits from the hydrogenase of A. eutrophus CH34 have been analysed.  相似文献   

9.
RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase activities are associated with the vaccinia virus mRNA capping enzyme, a heterodimeric protein containing polypeptides of Mr 95,000 and Mr 31,000. The genes encoding the large and small subunits (corresponding to the D1 and the D12 ORFs, respectively, of the viral genome) were coexpressed in Escherichia coli BL21 (DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. A 1000-fold purification of the guanylyltransferase was achieved by ammonium sulfate precipitation and chromatography using phosphocellulose and SP5PW columns. Partially purified guanylytransferase synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor. In the presence of AdoMet the enzyme catalyzed concomitant cap methylation with 99% efficiency. Inclusion of S-adenosyl methionine increased both the rate and extent of RNA capping, permitting quantitative modification of RNA 5' ends. Guanylyltransferase sedimented as a single component of 6.5 S during further purification in a glycerol gradient; this S value is identical with that of the heterodimeric capping enzyme from vaccinia virions. Electrophoretic analysis showed a major polypeptide of Mr 95,000 cosedimenting with the guanylyltransferase. RNA triphosphatase activity cosedimented exactly with guanylyltransferase. Methyltransferase activity was associated with guanylyltransferase and was also present in less rapidly sedimenting fractions. The methyltransferase activity profile correlated with the presence of a Mr 31,000 polypeptide. These results indicate that the D1 and D12 gene products are together sufficient to catalyze all three enzymatic steps in cap synthesis. A model for the domain structure of this enzyme is proposed.  相似文献   

10.
Small ribosomal subunits of gram-positive cells of Streptomyces aureofaciens contain an acidic protein designated SS1. Purified protein SS1 has the same mobility in sodium dodecyl sulfate/polyacrylamide gel as ribosomal protein S1 of Escherichia coli (apparent Mr 68 000). Protein SS1 was dissected under mild conditions with trypsin and generated fragments were compared with well-characterized fragments of protein S1. The protein SS1 contains a structure homologous with the C-terminal fragment of protein S1. The affinity of protein SS1 to poly(U) is virtually identical with that of E. coli protein S1. In contrast to protein S1, the addition of SS1 to partially S1-depleted ribosomes of E. coli had no stimulatory effect on poly(U)-directed synthesis of polyphenylalanine. At molar excess of SS1 over ribosomes, the protein had comparable inhibitory effect on polypeptide synthesis as had S1 of E. coli. Ribosomes of S. aureofaciens required about one order of magnitude higher concentration of poly(U) for maximum synthetic activity than did ribosomes of E. coli. The addition of proteins SS1 or S1 to ribosomes of S. aureofaciens had no stimulatory effect on translation of poly(U). Our data indicate that the high-molecular-mass acidic protein SS1 of small ribosomal subunits of S. aureofaciens exhibits only a part of the functional properties of E. coli protein S1.  相似文献   

11.
Vacuolar H(+)-ATPase was isolated from highly purified bovine kidney brush border, using a previously described immunoaffinity method. The affinity purified enzyme had reconstitutively active ATP-induced acidification that was inhibited by N-ethylmaleimide. The brush border H(+)-ATPase had a single pH optimum of 7.3, and a single Km for ATP of 360 microM. The enzyme showed no lipid activation; it had a substrate preference of ATP greater than ITP greater than UTP greater than GTP much greater than CTP, with an ATP:GTP selectivity of 1.69. The brush border H(+)-ATPase required no monovalent anion or cation for activity and was inhibited by the oxyanions NO3(-1) much greater than SO4(-2); sulfite stimulated activity at low concentrations and inhibited at higher concentrations. The inhibition produced by nitrate could not be attributed to dissociation of subunits from the enzyme. The divalent or trivalent cation preference was Mn+2 much greater than Mg+2 much greater than Co+2 greater than Al+3 greater than Ca+2 much greater than Ba+2,Sr+2; 1 mM Zn+2 inhibited the enzyme completely, but Cu+2 inhibited only 49% of activity at concentrations up to 5 mM. Sodium dodecyl sulfate-polyacrylamide gels of the brush border H(+)-ATPase showed subunits at Mr 70,000, a doublet at 56,000, 45,000, 42,000, 38,000, 33,000, 31,000, 15,000, 14,000, and 12,000. On two-dimensional gels, the pl value for the Mr 70,000 subunit was 6.3, for the Mr 56,000 was 6.4, and for the Mr 31,000 was 7.5-8.5, and microheterogeneity was observed in the Mr 56,000 and 31,000 subunits. A comparison of kidney cortex brush border H(+)-ATPase with kidney cortex microsomal H(+)-ATPase revealed differences in pH optimum, Km for ATP, lipid dependence, substrate preference, divalent ion preference, copper sensitivity, and in microheterogeneity of the Mr 56,000 and 31,000 subunits, providing evidence that different functional and structural classes of vacuolar H(+)-ATPase are segregated to specific membrane compartments.  相似文献   

12.
Vacuolar H+ ATPases reside in the plasma membrane of several segments of the mammalian nephron. In the proximal tubule, H+ ATPase is located in both the brush-border microvilli and in subvillar invaginations, while in the collecting duct intercalated cells, it is primarily in plasmalemma-associated membranes. H+ ATPase isolated from bovine kidney brush border has a cluster of polypeptides of Mr greater than 31,000 found associated with the Mr = 31,000 subunit, whereas H+ ATPase isolated from microsomes dose not have the additional associated polypeptides (Wang, Z.-Q., and Gluck, S. (1990) J. Biol. Chem. 265, 21957-21965, 1990). In this study, we describe the production of several new monoclonal antibodies to the bovine vacuolar H+ ATPase Mr = 31,000 subunit. Two of the antibodies differed in reactivity to the cluster of Mr greater than 31,000 subunits found in purified bovine kidney brush-border H+ ATPase. Antibody E11 reacted with both the Mr = 31,000 and Mr greater than 31,000 subunits and stained renal brush border intensely. Antibody H8 did not react with the Mr greater than 31,000 polypeptides and did not stain brush border. The heterogeneity of the Mr greater than 31,000 subunits did not appear attributable to glycosylation or phosphorylation. These findings provide further evidence for heterogeneity of the Mr = 31,000 subunit in different renal membrane compartments and suggest a role for the Mr greater than 31,000 polypeptides specific to the brush-border microvilli.  相似文献   

13.
Bromoperoxidase from Streptomyces aureofaciens ATCC 10762, a non-haem haloperoxidase, has been crystallized using the hanging drop method. Preliminary X-ray diffraction studies show that the crystals belong to the cubic space group P2(1)3 with a = 123.4 A. The asymmetric unit contains a dimer of Mr = 60,200. The crystals diffract to at least 2.3 A resolution and are suitable for crystallographic structure analysis.  相似文献   

14.
Hydrogenase isoenzyme 1 from the membrane fraction of anaerobically grown Escherichia coli has been purified to near homogeneity. The preparation involved dispersion of the membrane fraction with deoxycholate followed by ammonium sulphate precipitation, ion-exchange, hydroxyapatite and gel filtration chromatography steps. The enzyme was assayed by quantification of the H2:benzyl viologen oxidoreductase activity immunoprecipitated by a non-inhibitory antiserum specific for the enzyme. The enzyme constituted about 8% of the hydrogenase activity found in the detergent-dispersed membranes, the remainder being attributable to hydrogenase isoenzyme 2. Isoenzyme 1 was purified 130-fold and the specific activity of the final preparation was 10.6 mumol benzyl viologen reduced min-1 (mg protein)-1 (H2:benzyl viologen oxidoreductase). The final preparation contained polypeptides of apparent Mr 64,000, 31,000 and 29,000. Antibodies were raised both to the final preparation and to immunoprecipitation arcs containing hydrogenase isoenzyme 1, excised from crossed immunoelectrophoresis plates. The former cross-reacted with all three polypeptides in the enzyme preparation but the latter recognised only the Mr-64,000 polypeptide. Immunological analysis revealed that the polypeptides of apparent Mr 31,000 and 29,000 are fragments of a single polypeptide of Mr 35,000 which is present in the detergent-dispersed membranes. The fragmentation of the Mr-35,000 polypeptide during the preparation correlates with a change in the electrophoretic mobility of the enzyme. A similar electrophoretic mobility change was observed, accompanied by cleavage of the Mr-35,000 polypeptide to one of 32,000 when the enzyme was analysed after exposure of detergent-dispersed membranes to trypsin. The enzyme in the detergent-dispersed membranes consists minimally of two subunits of Mr 64,000 and two subunits of Mr 35,000. It contained 12.2 mol Fe and 9.1 mol acid-labile S2-/200,000 g enzyme. The enzyme, purified from bacteria grown in the presence of 63Ni, was found to contain 0.64 (+/- 0.20) mol Ni/200,000 g enzyme. A constant ratio of 63Ni immunoprecipitated to hydrogenase isoenzyme 1 activity immunoprecipitated by antiserum specific for the enzyme was observed during the preparation, consistent with Ni being part of the enzyme. The enzyme has a low Km for H2 (2.0 microM) in the H2:benzyl viologen oxidoreductase assay. It catalyses H2 evolution employing reduced methyl viologen as electron donor. It is inhibited reversibly by CO and irreversibly by N-bromosuccinimide.  相似文献   

15.
16.
myo-Inositol-1-phosphatase from bovine brain was purified over 2000-fold. The native enzyme has a Mr of 59,000, and on SDS/polyacrylamide-gel electrophoresis the subunit Mr was 31,000. Thus the native enzyme is a dimer of two apparently identical subunits. The enzyme, purified to a specific activity of more than 300 units/mg of protein (1 unit of enzyme activity corresponds to the release of 1 mumol of Pi/h at 37 degrees C), catalysed the hydrolysis of a variety of phosphorylated compounds, the best one, in terms of V/Km, being D-myo-inositol 1-phosphate. Kinetic constants of compounds tested, including both isomers of glycerophosphate and two deoxy forms of beta-glycerophosphate, were measured. They show the importance of the two hydroxyl groups which are adjacent to the phosphate in myo-inositol 1-phosphate. With a wide variety of substrates Li+ was found to be an uncompetitive inhibitor whose Ki varied with substrate structure.  相似文献   

17.
A D-2-haloacid dehalogenase was isolated and purified to homogeneity from Pseudomonas putida strain AJ1/23. The enzyme catalysed the stereospecific dehalogenation of the D-isomer of 2-chloropropionate. Using a new ion-chromatograph assay, the enzyme was found to catalyse the dehalogenation of short-chain 2-halocarboxylic acids. Maximum enzyme activity occurred at pH 9.5 and 50 degrees C and the enzyme was insensitive to most -SH reagents. The enzyme has an Mr of about 135,000 and appears to be composed of four subunits of identical Mr.  相似文献   

18.
Epoxide hydrolase activity of Streptomyces strains   总被引:2,自引:0,他引:2  
The discovery of epoxide hydrolases within a Streptomyces sp. strain collection is described. Screening was performed in 96 well microtiter plates using a modified 4-(p-nitrobenzyl)pyridine assay with styrene oxide, 1,2-epoxy-hexane or 3-phenyl ethylglycidate (3-PEG) as substrates. Out of 120 strains investigated, S. antibioticus Tü4, S. arenae Tü495 and S. fradiae Tü27 exhibited epoxide hydrolase activity. These strains were further investigated by performing laboratory-scale biotransformations utilizing styrene oxide, 1,2-epoxy-hexane and 3-PEG followed by subsequent quantitative analysis employing chiral gas chromatography. The highest conversions were achieved with whole cells from S. antibioticus Tü4 in the presence of 10% (v/v) DMSO. However, enantioselectivity was only satisfying (E = 31) in the presence of 5% (v/v) acetone, which allowed isolation of optically pure non-hydrolyzed (R)-styrene oxide (99% enantiomeric excess (ee)) and (S)-phenyl-1,2-ethandiol (72% ee) at 55% conversion after 24 h. The resolution of 3-PEG proceeded with slightly lower enantioselectivity albeit higher reaction rates. With S. fradiae Tü27 and S. arenae Tü495 enantioselectivity towards styrene oxide was only E = 3-4.  相似文献   

19.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   

20.
An isolation procedure for the reticulocyte heme-controlled alpha subunit of eukaryotic translational initiation factor 2 (eIF-2 alpha) kinase is described which yields different fractions with kinase activity. Each is associated with a different spectrin-related peptide as identified by anti-spectrin monoclonal antibodies. The most abundant of these peptides is the Mr 90,000 species characterized previously (Kudlicki, W., Fullilove, S., Kramer, G., and Hardesty, B. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5332-5336). Association with the spectrin-related peptides appears to account for the heterogeneity of the enzyme during its isolation and for its highly asymmetric structure. Isolated alpha or beta spectrin subunits as well as the separated homogeneous Mr 90,000 peptide cause an increase in the initial rate of eIF-2 alpha phosphorylation that is related to a decrease in Km with little or no effect on Vmax for the phosphorylation reaction. Fractionation of highly purified eIF-2 alpha kinase preparations using affinity chromatography on monoclonal anti-spectrin antibodies has separated eIF-2 alpha kinase activity from the Mr 100,000 phosphopeptide which copurifies with the kinase during all other purification steps. A Mr 95,000 peptide, detectable only by photoaffinity labeling with 8-azido-[alpha 32P]ATP, is shown to be distinct from the Mr 100,000 phosphopeptide and appears to be the catalytic subunit of the eIF-2 alpha kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号