首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

3.

Background

Leber's congenital amaurosis (LCA) encompasses the most precocious and severe forms of inherited retinal dystrophy, displaying very significant visual handicap at or soon after birth 1 . Among the currently identified mutations, alterations in the gene coding for retinal pigment epithelium 65‐kDa protein (RPE65) lead to LCA2 2 . Existing animal models for LCA2 (RPE65‐/‐ null mice 3 and naturally occurring RPE65‐/‐ Briard dogs 4 ) exhibit near normal retinal histology at birth, although no recordable photofunction can be detected. Structural degeneration in both cases occurs with delayed onset, cone death generally preceding that of rods.

Methods

We obtained retinal tissue from a voluntarily aborted embryo of an LCA2 carrier in order to compare histopathology and immunohistochemistry with age‐matched normal foetal retina.

Results

Compared to normal retinas, affected retina displayed cell loss and thinning of the outer nuclear (photoreceptor) layer, decreased immunoreactivity for key phototransduction proteins, and aberrant synaptic and inner retinal organisation. The gene mutation abolished detectable expression of RPE65 within the retinal pigment epithelium (RPE) of affected eyes, and ultrastructural examination revealed the presence of lipid and vesicular inclusions not seen in normal RPE. In addition, mutant eyes demonstrated thickening, detachment and collagen fibril disorganisation in the underlying Bruch's membrane, and the choroid was distended and abnormally vascularised, in comparison with controls.

Conclusions

Such data contrast with the late‐onset ocular changes observed in animal models, indicating caution should be exercised when inferring human retinal pathophysiology from information based on other species. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

4.
Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein in the interphotoreceptor matrix of bovine, human, monkey, and rat eyes. It may transport retinol between the retinal pigment epithelium and the neural retina. In light-reared Royal College of Surgeons (RCS) and RCS retinal dystrophy gene (rdy)+ rats, the amount of IRBP in the interphotoreceptor matrix increased in corresponding proportion to the amount of total rhodopsin through postnatal day 22 (P22). In the RCS-rdy+ rats, the amount increased slightly after P23. However, in the RCS rats there was a rapid fall in the quantity of IRBP as the photoreceptors degenerated between P23 and P29. No IRBP was detected by immunocytochemistry in rats at P28. The amount of rhodopsin fell more slowly. Although retinas from young RCS and RCS-rdy+ rats were able to synthesize and secrete IRBP, this ability was lost in retinas from older RCS rats (P51, P88) but not their congenic controls. The photoreceptor cells have degenerated at these ages in the RCS animals, and may therefore be the retinal cells responsible for IRBP synthesis. The putative function of IRBP in the extracellular transport of retinoids during the visual cycle is consistent with a defect in retinol transport in the RCS rat reported by others.  相似文献   

5.
Q Zheng  Y Ren  R Tzekov  Y Zhang  B Chen  J Hou  C Zhao  J Zhu  Y Zhang  X Dai  S Ma  J Li  J Pang  J Qu  W Li 《PloS one》2012,7(8):e44855
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.  相似文献   

6.
A retinol-binding glycoprotein ( IRBP ) was purified in milligram quantities from the extracellular matrix ( interphotoreceptor matrix) that occupies the subretinal space in bovine eyes. IRBP binds 2.2 molecules of all-trans retinol with a KD of approximately 10(-6) M. The holoprotein has lambda max at 280 nm (E1%1 cm = 10.99) and at 330 nm (E1%1 cm = 7.88). When freshly isolated from light-exposed eyes, IRBP contains up to 0.6 molecule of all-trans retinol, together with small amounts of the 11-cis and 13-cis isomers. IRBP also binds exogenous cholesterol, alpha-tocopherol, and all-trans retinoic acid, all of which are completely displaced by all trans retinol. The affinity of alpha-tocopherol for IRBP was at least several orders of magnitude less than that of all-trans retinol. IRBP contains 8.4% by weight of carbohydrate, which consists of sialic acid, neutral hexoses, and glucosamine in the molar ratio of approximately 1:3:2. No galactosamine was detected. Observations on the binding of 125I-labeled lectins to IRBP in sodium dodecyl sulfate-polyacrylamide gels before and after desialosylation suggest that at least one oligosaccharide chain is of the sialated biantennary complex type and contains fucose. The Mr of IRBP on calibrated size-exclusion columns averaged 249,000; on sodium dodecyl sulfate-polyacrylamide gels (with or without dithiothreitol) the apparent Mr was 144,000. IRBP exists in at least four isoelectric forms that bind concanavalin A and have pI values ranging from 4.4 to 4.8. Rabbit anti-bovine IRBP antiserum gave a single precipitin line against purified bovine IRBP , which showed a line of complete identity with crude bovine interphotoreceptor matrix and a line of partial identity with human interphotoreceptor matrix. The human material contains a prominent protein with lectin-binding properties similar to bovine IRBP but with a somewhat faster electrophoretic mobility. When isolated bovine neural retinas were incubated with 3H-labeled fucose, glucosamine, or leucine, a solitary labeled protein identified as IRBP was secreted into the medium. Labeled IRBP could not be detected in the medium when retinal pigment epithelium was incubated with these precursors under the same conditions. Neural retinas incubated with 3H-labeled leucine in the presence of tunicamycin secreted a form of IRBP that did not bind concanavalin A and had an Mr reduced by approximately 5,000.  相似文献   

7.
Delay of photoreceptor degeneration in tubby mouse by sulforaphane   总被引:1,自引:0,他引:1  
In this study, the homozygous tubby (tub/tub) mutant mouse, with an early progressive hearing loss and photoreceptor degeneration, was used as a model system to examine the effects of systemic administration of a naturally occurring isothiocyanate, sulforaphane (SF), on photoreceptor degeneration. Several novel observations have been made: (i) the mRNA and protein expression of thioredoxin (Trx), thioredoxin reductase (TrxR) and NF-E2-related factor-2 (Nrf2) were significantly reduced even prior to photoreceptor cell degeneration in the retinas of tub/tub mice, suggesting that retinal expression of the Trx system is impaired and that Trx regulation is involved in the pathogenesis of retinal degeneration in this model, (ii) intraperitoneal injection with SF significantly up-regulated retinal levels of Trx, TrxR, and Nrf2, and effectively protected photoreceptor cells in tub/tub mice as evaluated functionally by electroretinography and morphologically by quantitative histology, and (iii) treatment with PD98059, an inhibitor of extracellular signal-regulated kinases (ERKs), blocked SF-mediated ERKs activation and up-regulation of Trx/TrxR/Nrf2 in the retinas of tub/tub mice. This suggests that ERKs and Nrf2 are involved in the mechanism of SF-mediated up-regulation of the Trx system to protect photoreceptor cells in this model. These novel findings are significant and could provide important information for the development of a unique strategy to prevent sensorineural deafness/retinal dystrophic syndromes and also other forms of inherited neurological disorders.  相似文献   

8.
The mode of inheritance of macular degeneration was determined with 45 cynomolgus monkeys (18 females and 27 males) who were the offspring of one breeding male with typical macular degeneration. In the first generation, 27 offspring (10 females and 17 males) were born from mating between the macular degeneration-affected founder male and 5 normal female breeders. Among them, 18 monkeys (9 females and 9 males) were judged as having macular degeneration (affected). Next, the distribution of affected offspring was examined with 18 offspring who were born from 3 different mating pairs, normal vs normal, affected vs normal and affected vs affected, when they became 2 years old. All of the 9 monkeys (4 females and 5 males) obtained from the 2 pairs of normal vs normal were normal. On the other hand, 6 affected monkeys (3 females and 3 males) were detected in 8 offspring from the mating pair of affected vs normal, and the single offspring produced by the mating pair of affected vs affected was affected. These results showed that this degeneration must be early onset familial macular degeneration controlled by autosomal dominant gene(s).  相似文献   

9.
Light exposure induces retinal photoreceptor degeneration and retinal remodeling in both the normal rat retina and in animal models of retinal degeneration. Although cation entry is one of the triggers leading to apoptosis, it is unclear if this event occurs in isolation, or whether a number of pathways lead to photoreceptor apoptosis following light exposure. Following light exposure, we investigated the characteristics of cation entry, apoptotic markers [using terminal deoxynucleotidyl transferase (EC 2.7.7.31) dUTP nick-end labeling (TUNEL) labeling] and metabolic properties of retina from Sprague-Dawley (SD) rats and a rat model of retinitis pigmentosa [proline-23-histidine (P23H) rat]. Assessment of cation channel permeability using agmatine (AGB) labeling showed that excessive cation gating accompanied the series of anomalies that occur prior to photoreceptor loss. Increased AGB labeling in photoreceptors was seen in parallel with the appearance of apoptotic photoreceptors detected by TUNEL labeling with only a smaller proportion of cells colocalizing both markers. However, SD and P23H retinal photoreceptors differed in the amounts and colocalization of AGB gating and TUNEL labeling as a function of light exposure. Finally, reduced retinal lactate dehydrogenase levels were found in SD and P23H rat retinas after a 24-h light exposure period. Short-term (2 h) exposure of the P23H rat retina caused an increase in lactate dehydrogenase activity suggesting increased metabolic demand. These results suggest that energy availability may be exacerbated during the early stages of light exposure in susceptible retinas. Also, the concomitant observation of increased ion gating and TUNEL labeling suggest the existence of at least two possible mechanisms in light-damaged retinas in both SD and the P23H rat retina.  相似文献   

10.
Smith  S. B  Mcclung  J  Wiggert  B. N  Nir  I 《Brain Cell Biology》1997,26(9):605-613
Rhodopsin regeneration requires attachment between the retinal pigment epithelium (RPE) and rod outer segments; however, in experimentally induced retinal detachment, rhodopsin regeneration can be restored partially upon addition of IRBP (interphotoreceptor retinoid binding protein). The mivit/mivit (vitiligo) mutant mouse, a model of slowly progressing photoreceptor cell degeneration, has a marked elevation of IRBP at 4 weeks as well as progressive detachment of the retina. The purpose of this study was to determine whether this mutant is capable of regenerating rhodopsin within a few hours following an intense light bleach. Rhodopsin regeneration was determined spectrophotometrically in mice after an intense one hour light bleach followed by 0, 1, 2, 4 or 24 h of dark recovery. IRBP was localized immunohistochemically in fixed frozen tissue at the light microscopic level and in LR Gold embedded tissue at the ultrastructural level. Rhodopsin regeneration experiments indicated that rhodopsin levels following 0, 1, 2 and 4 h dark-recovery were significantly less in mivit/mivit mutants compared with controls. Immunohistochemical detection of IRBP indicated an altered distribution of the protein in the mutant mice compared with controls. There was accumulation in the region of the inner segments in mutant retinas rather than distribution only to the RPE/OS apical regions as in controls. The data suggest that regeneration of rhodopsin is reduced by 4 weeks postnatally in the mivit/mivit mouse. There is partial detachment of the retina at this age; and IRBP, thought to be essential for proper functioning of the visual cycle, is aberrantly distributed in this mutant.  相似文献   

11.
Interphotoreceptor retinoid binding protein (IRBP) is a soluble glycolipoprotein located between the neurosensory retina and pigment epithelium, which may serve to transport vitamin A derivatives between these tissues. The specific cell type responsible for IRBP synthesis has not been well established. To address this issue, we have examined the expression of IRBP mRNA in human and cone-dominant ground squirrel retinas by in situ hybridization. Optimal labeling and histological resolution were achieved with 35S- and 3H-labeled anti-sense riboprobes made from a human IRBP cDNA clone, and semi-thin wax-embedded retinal sections. In human retina, label was localized over the inner segments of both rod and cone photoreceptors. Quantitative analysis demonstrated a fourfold higher density of label over rod inner segments. In ground squirrel retina, labeling was found almost exclusively over the inner segments of cones. The results indicate that in human retina both rods and cones express IRBP mRNA, albeit at different levels. In cone-dominant species such as the ground squirrel, cones are the principal cell type responsible for IRBP mRNA synthesis.  相似文献   

12.
13.
Abstract: The human tissue inhibitor of metalloproteinases-3 (TIMP3) gene is the most recently characterized member of a family of genes whose products are implicated in extracellular matrix (ECM) remodelling. We previously described an increase in expression of TIMP3 mRNA in retinas affected by the progressive photoreceptor degenerative disease, simplex retinitis pigmentosa (RP). To gain further insight into the association between TIMP3 overexpression and retinal degeneration, we have analyzed the cellular localization of TIMP3 mRNA in control and simplex RP retinas using in situ hybridization. No TIMP3 mRNA expression was detectable in control neural retina. In RP-affected retinas, overexpression of TIMP3 mRNA was observed in photoreceptor inner segments and in the ganglion cell layer only in those regions retaining relatively nondystrophic retinal architecture. Modulation of TIMP3 expression in these regions, possibly in association with matrix metalloproteinases, may reflect remodelling of the retinal ECM and concomitant reorganization of neuronal connectivity.  相似文献   

14.
Biochemical and immunological techniques were used to determine the emergence of interstitial retinol binding protein (IRBP), rhodopsin, and stored retinyl esters (all-trans and 11-cis) during retinal development in normal and rd mice. IRBP could be demonstrated at embryonic Day 17 (E17), corresponding to an early stage of inner segment development. Although all-trans retinyl esters were present earlier, 11-cis retinyl esters did not appear until postnatal Days 6-7 (P6-P7), corresponding to rod outer segment (ROS) disc formation. Rhodopsin was detected at the same developmental stage. The proportion of 11-cis retinyl esters reached a maximum of 40-50% at P15-P20. Thereafter, the proportion dropped, due to more rapid accumulation of the all-trans isomer. Rhodopsin and IRBP increased in parallel with ROS elongation up to P25, when the ROS had reached their mature lengths. The increases then continued up to P40-P50. In rd (retinal degeneration) mice, IRBP and rhodopsin were identical with the controls until P12, but then dropped as the photoreceptors degenerated. Synthesis and secretion of IRBP in vitro was less than 10% of the controls in rd retinas at P26, when only 4-5% of the photoreceptors survived. The quantities of retinyl esters (mainly stearate and palmitate in the ratio of 6:1, respectively) stored in dark-adapted mouse eyes progressively increased as the animals aged, representing 0.5 mole eq. of the rhodopsin at 8 months. Although retinyl esters (11-cis and all-trans) also accumulated in rd mouse eyes up to P12, little further increase occurred. At P93, the retinyl esters (0.01 nmole X eye-1) were only 4% of the controls at P91. A peak in the proportion of 11-cis isomer occurred at P10-P20, but it averaged only 15% of the total ester and declined to 5% at P93. These findings support the hypothesis that IRBP is synthesized by the rods and cones, and suggest that its synthesis and secretion are initiated when the photoreceptor inner segments start to differentiate. 11-cis Retinoids and rhodopsin do not appear until the outer segments start to form. It is suggested that in the rd mouse the absence of photoreceptors, perhaps coupled with lack of normal interphotoreceptor matrix, leads to a loss in the ability of the pigment epithelium to store retinyl esters.  相似文献   

15.
Summary Retinae of Abyssinian cats homozygous for a retinal degeneration gene, and normal controls, have been investigated using antibodies directed against opsin, transducin (TD-), S-antigen (48K protein), interphotoreceptor retinoid-binding protein (IRBP), and cone outer segments. IRBP-immunoreactivity (IR) is much reduced at stage 2 of the disease in affected retinae; later massive photoreceptor cell death occurs. In cats, at a late stage of the disease, the retina exhibits few S-antigen-IR cells in the peripheral part of the retina whereas, in the central part, some patches of cells exhibiting opsin-IR, TD--IR, and S-antigen-IR are present in remnants of the outer nuclear layer (ONL). No IRBP-IR is detectable at this stage. The form and size of the majority of these remaining cells, however, does not resemble that of normal photoreceptors. No, or only rudimentary, inner and outer segments are present; long bifurcating basal protrusions often occur. These cells, which could be remains of cone elements, are S-antigen immunoreactive. Double labelling for different retina-specific proteins reveals a co-localization of opsin, TD- and S-antigen in some, but not all, remaining photoreceptor elements. Cells exhibiting opsin-IR also show TD--IR and S-antigen-IR located within the entire cell and its protrusions. In control retinae and retinae at early stages of the disease, immunoreactions are comparable with all antibodies used. However, TD--IR is less intensive in the photoreceptor terminals. S-antigen-IR cones are most frequently present in the peripheral retina. Reduction of IRBP at an early stage of the disease could be one of the factors leading to photoreceptor cell death at later stages.  相似文献   

16.
Retinal degenerations such as Retinitis Pigmentosa remain difficult to treat given the diverse array of genes responsible for their aetiology. Rather than concentrate on specific genes, our focus is on identifying therapeutic avenues for the treatment of retinal disease that target general survival mechanisms or pathways. Norgestrel is a synthetic progestin commonly used in hormonal contraception. Here, we report a novel anti-apoptotic role for Norgestrel in diseased mouse retinas in vivo. Dosing with Norgestrel protects photoreceptor cells from undergoing apoptosis in two distinct models of retinal degeneration; the light damage model and the Pde6b(rd10) model. Photoreceptor rescue was assessed by analysis of cell number, structural integrity and function. Improvements in cell survival of up to 70% were achieved in both disease models, indicating that apoptosis had been halted or at least delayed. A speculative mechanism of action for Norgestrel involves activation of survival pathways in the retina. Indeed, Norgestrel increases the expression of basic fibroblast growth factor which is known to both promote cell survival and inhibit apoptosis. In summary, our results demonstrate significant protection of photoreceptor cells which may be attributed to Norgestrel mediated activation of endogenous survival pathways within the retina.  相似文献   

17.
Microgliosis is a common phenomenon in neurodegenerative disorders including retinal dystrophies. We performed a detailed characterization of activated microglia in the retinoschisin (Rs1h)-deficient (Rs1h−/Y) mouse model of inherited retinal degeneration. To visualize and isolate microglia, we crossed Rs1h−/Y animals with transgenic MacGreen mice, which express green fluorescent protein under the control of the macrophage-specific csf1r promoter. Activated microglia were detected in retinal sections and whole-mounts of early postnatal MacGreen/Rs1h−/Y mice before the onset of overt neuronal cell death. These activated microglia contained prominent lipid droplets and analysis of the retinal lipid composition showed decreased docosahexaenoic acid (DHA) levels in Rs1h−/Y retinas. To establish a link between microglia activation, reduced DHA levels, and neurodegeneration, a dietary intervention study was performed. Female Rs1h−/− mice and their Rs1h−/Y litter were either subjected to a diet enriched with DHA, or a control chow lacking DHA. Supplementation with DHA enhanced photoreceptor survival and converted activated microglia to a quiescent phenotype. Furthermore, DHA, but not docosapentaenoic acid or adrenic acid reduced pro-inflammatory gene expression, migration, and lipid accumulation of cultured BV-2 microglia. We conclude that retinal DHA levels control the activity of microglia and thereby may affect the progression and extent of retinal degeneration.  相似文献   

18.
19.
Transgenic mice expressing a dominant mutation in the gene for the phototransduction molecule rhodopsin undergo retinal degeneration similar to that experienced by patients with the retinal degenerative disease, retinitis pigmentosa (RP). Although the mutation is thought to cause photoreceptor degeneration in a cell‐autonomous manner, the fact that rod photoreceptor degeneration is slowed in chimeric wild‐type/mutant mice suggests that cellular interactions are also important for maintaining photoreceptor survival. To more fully characterize the nature of the cellular interactions important for rod degeneration in the RP mutant mice, we have used an in vitro approach. We found that when the retinas of the transgenic mice were isolated from the pigmented epithelium and cultured as explants, the rod photoreceptors underwent selective degeneration with a similar time course to that observed in vivo. This selective rod degeneration also occurred when the cells were dissociated and cultured as monolayers. These data indicate that the mutant rod photoreceptors degenerate when removed from their normal cellular relationships and without contact with the pigmented epithelium, thus confirming the relative cell autonomy of the mutant phenotype. We next tested whether normal retinal cells could rescue the mutant photoreceptors in a coculture paradigm. Coculture of transgenic mouse with wild‐type mouse or rat retinal cells significantly enhanced transgenic rod photoreceptor survival; this survival‐promoting activity was diffusible through a filter, was heat labile, and not present in transgenic retinal cells. Several peptide growth factors known to be present in the retina were tested as the potential survival‐promoting molecule responsible for the effects of the conditioned medium; however, none of them promoted survival of the photoreceptors expressing the Pro23His mutant rhodopsin. Nevertheless, we were able to demonstrate that the mutant photoreceptors could be rescued by an antagonist to a retinoic acid receptor, suggesting that the endogeneous survival‐promoting activity may function through this pathway. These data thus confirm and extend the findings of previous work that local trophic interactions are important in regulating rod photoreceptor degeneration in retinitis pigmentosa. A diffusible factor found in normal but not transgenic retinal cells has a protective effect on the survival of rod photoreceptors from Pro23His mutant rhodopsin mice. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 475–490, 1999  相似文献   

20.
Precise coordination of progenitor cell proliferation and differentiation is essential for proper organ morphogenesis and function during mammalian development. The mitogen-activated protein kinase kinase kinase 1 (MAP3K1) has a well-established role in anterior eyelid development, as Map3k1-knockout mice have defective embryonic eyelid closure and an `eye-open at birth' (EOB) phenotype. Here, we show that MAP3K1 is highly expressed in the posterior of the developing eye and is required for retina development. The MAP3K1-deficient mice exhibit increased proliferation and apoptosis, and Müller glial cell overproduction in the developing retinas. Consequently, the retinas of these mice show localized rosette-like arrangements in the outer nuclear layer, and develop abnormal vascularization, broken down retinal pigment epithelium, photoreceptor loss and early onset of retinal degeneration. Although the retinal defect is associated with increased cyclin D1 and CDK4/6 expression, and RB phosphorylation and E2F-target gene upregulation, it is independent of the EOB phenotype and of JNK. The retinal developmental defect still occurs in knockout mice that have undergone tarsorrhaphy, but is absent in compound mutant Map3k1(+/ΔKD)Jnk1(-/-) and Map3k1(+/ΔKD)Jnk(+/-)Jnk2(+/-) mice that have EOB and reduced JNK signaling. Our results unveil a novel role for MAP3K1 in which it crosstalks with the cell cycle regulatory pathways in the prevention of retina malformation and degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号