首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鲍配子识别蛋白的研究   总被引:4,自引:0,他引:4  
配子相互作用的生化机制对于进一步阐明生殖过程具有重要作用,它是深入了解细胞内识别的理想体系。精卵细胞相互作用包括一系列的步骤,开始于精子与卵细胞外被的接触,终止于两性细胞的融合及精子核进入卵细胞质中,而精卵细胞的识别具有建立于各自性细胞表面成分基础上的种的特异性,鲍则是研究精卵识别的好材料。鲍精子在发生顶体反应时释放出两种蛋白质——细胞溶素(1ysin)和18ku糖蛋白(spl8),其中的细胞溶素与其卵黄膜上的受体紧密结合,并利用非酶反应在卵黄膜上穿一个小孔,整个精子则从此孔穿过卵黄膜与卵细胞融合;spl8释放后则覆盖到精子细胞膜表面,起到溶解卵细胞脂质体的作用,即spl8介导精、卵细胞膜的融合。鲍卵细胞膜上存在细胞溶素受体,它是大的不分支的糖蛋白分子,占据了卵黄膜30%的组分,可以专一性地与细胞溶素相结合。这些配子识别蛋白共同进化且速度很快,其中细胞溶素和18ku糖蛋白通过正向选择进化,而细胞溶素受体进行协同进化。  相似文献   

2.
Abalone sperm lysin is a 16 kDa acrosomal protein used by sperm to create a hole in the egg vitelline envelope. Lysins from seven California abalone exhibit species-specificity in binding to their egg receptor, and range in sequence identity from 63 % to 90 %. The crystal structure of the sperm lysin dimer from Haliotis fulgens (green abalone) has been determined to 1.71 A by multiple isomorphous replacement. Comparisons with the structure of the lysin dimer from Haliotis rufescens (red abalone) reveal a similar overall fold and conservation of features contributing to lysin's amphipathic character. The two structures do, however, exhibit differences in surface residues and electrostatics. A large clustering of non-conserved surface residues around the waist and clefts of the dimer, and differences in charged residues around these regions, indicate areas of the molecule which may be involved in species-specific egg recognition.  相似文献   

3.
Lysin is a 16kDa acrosomal protein used by abalone sperm to create a hole in the egg vitelline envelope (VE). The interaction of lysin with the VE is species-selective and is one step in the multistep fertilization process that restricts heterospecific (cross-species) fertilization. For this reason, the evolution of lysin could play a role in establishing prezygotic reproductive isolation between species. Previously, we sequenced sperm lysin cDNAs from seven California abalone species and showed that positive Darwinian selection promotes their divergence. In this paper an additional 13 lysin sequences are presented representing species from Japan, Taiwan, Australia, New Zealand, South Africa, and Europe. The total of 20 sequences represents the most extensive analysis of a fertilization protein to date. The phylogenetic analysis divides the sequences into two major clades, one composed of species from the northern Pacific (California and Japan) and the other composed of species from other parts of the world. Analysis of nucleotide substitution demonstrates that positive selection is a general process in the evolution of this fertilization protein. Analysis of nucleotide and codon usage bias shows that neither parameter can account for the robust data supporting positive selection. The selection pressure responsible for the positive selection on lysin remains unknown.   相似文献   

4.
The evolution of species-specific fertilization in free-spawning marine invertebrates is important for reproductive isolation and may contribute to speciation. The biochemistry and evolution of proteins mediating species-specific fertilization have been extensively studied in the abalone (genus Haliotis). The nonenzymatic sperm protein lysin creates a hole in the egg vitelline envelope by species-specifically binding to its egg receptor, VERL. The divergence of lysin is promoted by positive Darwinian selection. In contrast, the evolution of VERL does not depart from neutrality. Here, we cloned a novel nonrepetitive region of VERL and performed an intraspecific polymorphism survey for red (Haliotis rufescens) and pink (Haliotis corrugata) abalones to explore the evolutionary forces affecting VERL. Six statistical tests showed that the evolution of VERL did not depart from neutrality. Interestingly, there was a subdivision in the VERL sequences in the pink abalone and a lack of heterozygous individuals between groups, suggesting that the evolution of assortative mating may be in progress. These results are consistent with a model which posits that egg VERL is neutrally evolving, perhaps due to its repetitive structure, while sperm lysin is subjected to positive Darwinian selection to maintain efficient interaction of the two proteins during sperm competition.  相似文献   

5.
Galindo BE  Moy GW  Swanson WJ  Vacquier VD 《Gene》2002,288(1-2):111-117
Abalone sperm use 16 kDa lysin to create a hole in the egg vitelline envelope (VE) by a species-specific, nonenzymatic mechanism. To create the hole, lysin binds tightly to VERL (the VE receptor for lysin), a giant, unbranched glycoprotein comprising 30% of the VE. Binding of lysin to VERL causes the VERL molecules to lose cohesion and splay apart creating the hole. Lysin and VERL represent a cognate pair of gamete recognition proteins, one male the other female, which mediate fertilization. The coevolution of such cognate pairs may underlie the establishment of species-specific fertilization which could be a component of the mechanism to achieve reproductive isolation and hence new species. Here we present the full-length cDNA sequence (11,166 bp) of VERL from the red abalone (Haliotis rufescens). There are 42 amino acids from the start Met residue to the beginning of the first 'VERL repeat'. Most of VERL (9981 bp; 89.4%) consists of 22 tandem repeats of a approximately 153 amino acid sequence that is predicted to be beta-sheet. The last VERL repeat is followed by 353 non-repeat amino acid residues containing a furin cleavage site (RTRR), a ZP domain and a hydrophobic COOH-terminus with a 3' UTR of only 10 nucleotides. VERL repeats 3-22 have been subjected to concerted evolution and consequently have almost identical sequences. Curiously, comparisons of repeats from other species shows that repeats 1 and 2 of red abalone VERL have not been subjected to concerted evolution since the divergence of the red species from the other six California species.  相似文献   

6.
While gene duplication is a major source of evolutionary novelty, the importance of this process in reproductive protein evolution has not been widely investigated. Here, we report the first known case of gene duplication of abalone sperm lysin in an allopatric subspecies found in the Eastern Atlantic, Haliotis tuberculata coccinea. Mass spectrometry identified both copies of the lysin protein in testis tissue, and 3-dimensional structural modeling suggests that both proteins remain functional. We also detected positive selection acting on both paralogs after duplication and found evidence of a recent selective sweep. Because H. t. coccinea occurs in geographic isolation from other abalone species, these findings suggest that the evolution of lysin is not driven to create reproductive barriers to unfit hybrid formation with an overlapping species. Instead, sexual selection or sexual conflict acting during abalone fertilization could be responsible for the recent positive selection on this protein. The presence of multiple, rapidly evolving lysin genes in H. tuberculata presents an opportunity to study the early stages of diversification of a protein whose function is well understood.  相似文献   

7.
Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced the fertilization/polyspermy rates after IVF, accompanied by en-mass detachment of zona bound sperm. Thus, the sperm borne 26S proteasome is a candidate zona lysin in mammals. This new paradigm has implications for contraception and assisted reproductive technologies in humans, as well as animals.  相似文献   

8.
Ascidian sperm lysin system   总被引:1,自引:0,他引:1  
Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degradation of the vitelline coat, however, remains poorly understood. In order to understand the lysin system, we have been studying the fertilization mechanism in ascidians (Urochordata) because we can obtain large quantities of gametes which are readily fertilized in the laboratory. Whereas ascidians are hermaphrodites, which release sperm and eggs simultaneously, many ascidians, including Halocynthia roretzi, are strictly self-sterile. Therefore, after sperm recognize the vitelline coat as nonself, the sperm lysin system is thought to be activated. We revealed that two sperm trypsin-like proteases, acrosin and spermosin, the latter of which is a novel sperm protease with thrombin-like substrate specificity, are essential for fertilization in H. roretzi. These molecules contain motifs involved in binding to the vitelline coat. We found that the proteasome rather than trypsin-like proteases has a direct lytic activity toward the vitelline coat. The target for the ascidian lysin was found to be a 70-kDa vitelline coat component called HrVC70, which is made up of 12 EGF-like repeats. In addition to the proteasome system, the ubiquitination system toward the HrVC70 was found to be necessary for ascidian fertilization. In this review, I describe recent progress on the structures and roles in fertilization of the two trypsin-like proteases, acrosin and spermosin, and also on the novel extracellular ubiquitin-proteasome system, which plays an essential role in the degradation of the ascidian vitelline coat.  相似文献   

9.
Unfertilized abalone eggs (Haliotis rufescens) possess an elevated fibrous glycoproteinaceous vitelline layer (VL) about 0.6 μm in thickness. Sperm bind to the VL by the tip of a large unreacted acrosome granule. After binding, the tip of the granule opens and the soluble contents are released onto the VL. A hole about 3 μm in diameter then forms in the VL in the area of the discharging acrosome. Ultrastructural observations show the hole to be filled with attenuated VL fibers. The sperm then swims through the hole and interacts with the egg plasma membrane. The soluble contents of abalone acrosomes can be obtained by induction of the acrosome reaction in high-calcium seawater. Two major proteins of subunit molecular weights 13,000 (13K) and 15,000 (15K) are found in the supernatant after removal of the reacted sperm by centrifugation. Gel analysis of whole sperm shows these two proteins are the major components of the cell. The 13K protein can be purified on the basis of its solubility at lower ionic strength. This protein is a potent solubilizer (lysin) of egg vitelline layers. Characterization of the 13K lysin yields an isoelectric point of about 9, basic amino acids accounting for 19.6% of its weight, a negative PAS reaction, a nondenatured-molecular-weight estimate of 17,000, the presence of exposed hydrophobic regions, and a lack of enzyme activity. The lytic action of the 13K protein is rapidly inactivated by boiling, showing that the native conformation is necessary for activity. The lysin does not degrade the macromolecular components of the VL. It does not produce reducing sugars, peptides, lysophosphatides, or SH groups. A turbidometric assay for lysin activity was developed using isolated VLs and 13K lysin. When lysin is added to VLs in seawater the dissolution action occurs for only 15–30 sec before abruptly stopping. Mixing various amounts of lysin with a constant amount of VLs shows that the lysin dissolves VLs by a stoichiometric, noncatalytic (nonenzymatic) mechanism. For example, about 11 μg of lysin are required for the complete dissolution of 63 μg of VL protein (the VL is 36% protein). An identical conclusion was reached by K. Haino-Fukushima (1974, Biochim. Biophys. Acta, 352, 179–191) working with an 8.8K lysin of another archeogastropod, Tegula pfeifferi. Isolated abalone VLs are composed of about five major glycoproteins ranging in molecular weight from 32 to 44K. High ionic strength such as 2 M KCl does not solubilize VLs, but agents which destroy hydrophobic bonds between macromolecules, such as NaSCN, dimethylsulfoxide, and heat, are VL solubilizers. Exposed hydrophobic portions of the lysin might bind to the hydrophobic regions of VL glycoproteins and competitively dissociate the VL fibers from each other, thus, destroying the VL's structural integrity. Stoichiometric mechanisms for making holes in egg investments may be more biologically attractive than enzymatic mechanisms. A stoichiometric reaction would be quickly self-limiting and nondegradative to other cell surface components.  相似文献   

10.
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of interspecific and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and nonsynonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, show that positive selection on sperm proteins can occur even when postzygotic reproductive isolation is incomplete.  相似文献   

11.
Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female–male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation.  相似文献   

12.
In Ciona intestinalis, sperm penetration through the egg vitelline coat is an essential event of fertilization. We investigated whether trypsin- and chymotrypsin-like enzymes are involved in this event. Inhibitors and peptide substrates for chymotrypsin-like enzymes blocked the overall process of fertilization in a concentration-dependent manner. The inhibitory activity was specifically exerted on the step of sperm penetration. Chymotrypsin-like protease activity was identified in spermatozoa with the fluorogenic synthetic substrate Suc-Ala-Ala-Phe-AMC, which was the most effective substrate in blocking sperm penetration. These data indicate that a chymotrypsin-like protease activity is a sperm lysin of Ciona intestinalis.  相似文献   

13.
Abalone sperm lysin is a nonenzymatic, 16-kDa protein that creates a hole in the egg vitelline envelope (VE) through which the sperm swims to fuse with the egg. The dissolution of isolated VE by lysin is species specific. Interspecies comparisons show that the most divergent region of lysin is the N-terminal segment of residues 1-12 which is always species-unique. The C-terminus and three internal segments are moderately variable between species, but not species unique. Analysis of nucleotide substitutions shows that lysin evolves rapidly by positive Darwinian selection, suggesting that there is adaptive value in altering its amino acid sequence. The results reported here, in which segments of lysin were exchanged between two species, prove by direct experimentation that the interspecies variable termini play major roles in the species-specific recognition between sperm lysin and the egg VE.  相似文献   

14.
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely, reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, Mytilus galloprovincialis, and Mytilus trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement (RCD), which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of RCD; neither are there unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection, and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.  相似文献   

15.
Abalone sperm lysin is a 16 kDa protein that creates a hole in the egg vitelline envelope (VE) to allow the sperm to fuse with the egg. Purified lysin exhibits quantitative species-specificity in the dissolution of isolated VE. The molecular basis for this specificity has been studied by sequencing lysin cDNA and by solving the lysin crystal structure. In the deduced amino acid sequences of lysins of seven species of California abalones 50% of the positions are invariant. The most highly variable and strictly species-specific region is the amino-terminal domain of residues 2-12. The crystal structure of lysin reveals a highly α-helical protein with a novel fold. Two tracks of basic amino acids run the length of the molecule. A hydrophobic patch of 11 residues lies on the opposite surface from the basic tracks. The species-specific domain of positions 2-12 extends away from the helical core. Mapping the species-variable positions onto the lysin structure indicates regions which could be involved in species-specific molecular recognition.  相似文献   

16.
Research on speciation of marine organisms has lagged behind that of terrestrial ones, but the study of the evolution of molecules involved in the adhesion of gametes in free-spawning invertebrates is an exception. Here I review the function, species-specificity, and molecular variation of loci coding for bindin in sea urchins, lysin in abalone and their egg receptors, in an effort to assess the degree to which they contribute to the emergence of reproductive isolation during the speciation process. Bindin is a protein that mediates binding of the sperm to the vitelline envelope (VE) of the egg and the fusion of the gametes' membranes, whereas lysin is a protein involved only in binding to the VE. Both of these molecules are important in species recognition by the gametes, but they rarely constitute absolute blocks to interspecific hybridization. Intraspecific polymorphism is high in bindin, but low in lysin. Polymorphism in bindin is maintained by frequency-dependent selection due to sexual conflict arising from the danger of polyspermy under high densities of sperm. Monomorphism in lysin is the result of purifying selection arising from the need for species recognition. Interspecific divergence in lysin is due to strong positive selection, and the same is true for bindin of four out of seven genera of sea urchins studied to date. The differences between the sea urchin genera in the strength of selection can only partially be explained by the hypothesis of reinforcement. The egg receptor for lysin (VERL) is a glycoprotein with 22 repeats, 20 of which have evolved neutrally and homogenized by concerted evolution, whereas the first two repeats are under positive selection. Selection on lysin has been generated by the need to track changes in VERL, permitted by the redundant structure of this molecule. Both lysin and bindin are important in reproductive isolation, probably had a role in speciation, but it is hard to determine whether they meet the strictest criteria of "speciation loci," defined as genes whose differentiation has caused speciation.  相似文献   

17.
The sonicated supernatant of the sperm of the toad, Bufo japonicus, can digest easily the vitelline coat (VC) of uterine eggs, and to a lesser extent the VC of coelomic eggs, but not that of activated eggs. The VC lysis and fertilization were competitively inhibited in the presence of t-butyloxycarbonyl-L-Gln-L-Arg-L-Arg-4-methylcoumaryl-7-amide (Boc-Gln-Arg-Arg-MCA), suggesting the involvement of proteases in the fertilization process. Starting from a sonicated supernatant, a potent VC lysin, possessing hydrolytic activity on Boc-Gln-Arg-Arg-MCA, was obtained by anion-exchange chromatography and gel filtration. The activity of the partially purified lysin was inhibited by diisopropyl fluorophosphate (DFP) and by such trypsin inhibitors as soybean trypsin inhibitor, leupeptin, and (p-amidinophenyl) methanesulfonyl fluoride hydrochloride, but not by chymostatin, E-64, and ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. The molecular weight of the lysin was estimated to be 32K, based on the fluorographic image of 3H-DFP binding to the lysin on sodium dodecyl sulfate gel electrophoresis. The VC lysin was most active at pH 7.0–7.6 and under low ionic strength equivalent to fresh water. The release of the VC lysin was induced upon incubation of sperm with the contents of oviducal pars recta granules (PRG), which are known to induce the acrosome reaction. We conclude that the protease studied here represents the VC lysin of toad sperm that is involved in fertilization by digesting the VC of uterine eggs, probably released as a result of the acrosome reaction induced by PRG.  相似文献   

18.
Kresge N  Vacquier VD  Stout CD 《Biochemistry》2001,40(18):5407-5413
Sp18 is an 18 kDa protein that is released from abalone sperm during the acrosome reaction. It coats the acrosomal process where it is thought to mediate fusion between sperm and egg cell membranes. Sp18 is evolutionarily related to lysin, a 16 kDa abalone sperm protein that dissolves the vitelline envelope surrounding the egg. The two proteins were generated by gene duplication followed by rapid divergence by positive selection. Here, we present the crystal structure of green abalone sp18 resolved to 1.86 A. Sp18 is composed of a bundle of five alpha-helices with surface clusters of basic and hydrophobic residues, giving it a large dipole moment and making it extremely amphipathic. The large clusters of hydrophobic surface residues and domains of high positive electrostatic surface charge explain sp18's ability as a potent fusagen of liposomes. The overall fold of sp18 is similar to that of green abalone lysin; however, the surface features of the proteins are quite different, accounting for their different roles in fertilization. This is the first crystal structure of a protein implicated in sperm-egg fusion during animal fertilization.  相似文献   

19.
During their journey through the oviductal pars recta, the vitelline envelope (VE) of Bufo arenarum oocytes encounter structural alterations that make them sensitive to attack by sperm lysin and thus to penetration by sperm cells. The role of pars recta (PR) on the specificity of fertilization between amphibians was analyzed by conditioning Bufo arenarum oocytes with either homologous PR extract (PRE) or Leptodactylus chaquencis PRE. The oocytes were thereafter exposed to sperm lysin preparations from both species. Lysis of the VE only took place when the oocytes were exposed to the homologous PRE. The pattern of protein composition of PRE of these species was strikingly different as shown by Coomassie blue staining of SDS-PAGE. Moreover, antibodies against PR fluid (PRF) of Bufo arenarum produced seven bands of immunoprecipitation in electrophoresed homologous PRE and only one faint band in Leptodactylus chaquencis PRE. Here we show that: (i) the biological activity of PR from Bufo arenarum and Leptodactylus chaquencis over the VE of Bufo arenarum oocytes is species-specific; (ii) this specificity seems to be based in differences in protein structure, which was indicated by the fact that proteins from PRE of Leptodactylus chaquencis and Bufo arenarum were antigenically distinct; (iii) the specificity was solely related to PR activity and not to sperm lysin activity since sperm lysin preparations from both species showed comparable activity.  相似文献   

20.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号