首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During anemic episodes, goats and certain sheep replace hemoglobin A (HbA = α2β2A) with hemoglobin C (HbC = α2β2C). Rabbit serum directed against either purified sheep HbA or purified sheep HbC was prepared. Both types were used to test whether the two hemoglobins are found in the same cell during switching by an indirect fluorescent antibody assay.Unabsorbed antisheep HbA cross-reacted extensively with goat HbA but to a lesser extent with goat or sheep HbC. Similarly, unabsorbed antisheep HbC reacted with these antigens in the order: Sheep HbC > goat HbC > sheep HbA > goat HbA. Cross-absorption resulted in sera specific either for sheep and goat HbA or for sheep and goat HbC. The specificities were confirmed by indirect fluorescent antibody staining of sheep and goat erythrocytes containing either at least 99% HbA or at least 99% HbC.Smears of erythrocytes from sheep and goats in the process of switching were reacted with one of the absorbed sera then with fluorescein conjugated antirabbit immunoglobulin G. The sum of the fractions stained both by anti-HbA and by anti-HbC exceeded 100% during the switch. Most strikingly when HbA was replacing HbC, nearly all cells stained for HbC while more than half stained for HbA. Thus, the two hemoglobins are found in the same cell during switching.  相似文献   

2.
Sickle cell disease (SCD) results from a sequence defect in the β-globin chain of adult hemoglobin (HbA) leading to expression of sickle hemoglobin (HbS). It is traditionally diagnosed by cellulose-acetate hemoglobin electrophoresis or high-performance liquid chromatography. While clinically useful, these methods have both sensitivity and specificity limitations. We developed a novel mass spectrometry (MS) method for the rapid, sensitive and highly quantitative detection of endogenous human β-globin and sickle hβ-globin, as well as lentiviral-encoded therapeutic hβAS3-globin in cultured cells and small quantities of mouse peripheral blood. The MS methods were used to phenotype homozygous HbA (AA), heterozygous HbA–HbS (AS) and homozygous HbS (SS) Townes SCD mice and detect lentiviral vector-encoded hβAS3-globin in transduced mouse erythroid cell cultures and transduced human CD34+ cells after erythroid differentiation. hβAS3-globin was also detected in peripheral blood 6 weeks post-transplant of transduced Townes SS bone marrow cells into syngeneic Townes SS mice and persisted for over 20 weeks post-transplant. As several genome-editing and gene therapy approaches for severe hemoglobin disorders are currently in clinical trials, this MS method will be useful for patient assessment before treatment and during follow-up.  相似文献   

3.
The dielectric constants of sickle cell hemoglobin were determined before and after gelation. The dielectric properties of oxy and deoxy sickle cell hemoglobin in solution are nearly identical to those of oxy and deoxy hemoglobin A. Only in the gel state did deoxy sickle cell hemoglobin display dielectric behavior different from that in solution. Upon gelation of deoxy sickle cell hemoglobin, the dielectric constant showed a marked decrease, and the relaxation frequency shifted towards higher frequencies. This result suggests that dielectric constant measurement can be used for the investigation of the kinetics of polymerization of sickle cell hemoglobin molecules. Despite the marked decrease in the dielectric constant, deoxy sickle cell hemoglobin still showed a well-defined dielectric dispersion even in the gel state. This indicates that individual molecules have considerable freedom of rotation in gels. It was observed that the dielectric properties of gelled deoxy sickle cell hemoglobin were affected by electrical fields at the level of 10 to 20 V/cm. This observation suggests that electrical fields of moderate strengths are able to perturb the gel structure if the system is near the transition region. The non-linear electrical behavior of gelled sickle cell hemoglobin will be discussed further in subsequent papers.  相似文献   

4.
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients.  相似文献   

5.
The effect of a concurrent delayed hypersensitivity reaction on the antibody response to sheep red cells was assessed by a plaque assay. Guinea pigs with delayed hypersensitivity to tuberculin purified protein derivative (PPD) or egg albumin showed an increased antibody response to sheep red cells when the cells were injected intravenously at the same time as PPD or egg albumin. This effect was transferred to normal guinea pigs by serum from guinea pigs with delayed hypersensitivity to PPD or egg albumin taken 24 hr after injecting the corresponding antigen. Supernatants containing migratory inhibitory factor were prepared by incubating lymphocytes from sensitized rabbits with antigen. These supernatants were injected with sheep red cells and gave rise to an enhanced plaque response. Similar results were obtained with supernatants from normal rabbit thymus cells. The role of mediators of delayed hypersensitivity in enhancing antibody formation and in T cell/B cell cooperation is discussed.  相似文献   

6.
We determined the complete amino acid sequences of the hemoglobin of two species, guinea fowl and California quail, in Galliformes from intact globin chain and chemical cleavage fragments in order to analyze the molecular evolution of hemoglobin for the classification of Galliformes. Galliformes have two types of hemoglobin components, HbA and HbD, which consist of identical chain and different chains. The sequences are similar to globin chains of Galliformes reported previously. These sequences were compared with those of other Galliformes (Phasianidae, Meleagrididae) using duck and goshawk as out-groups. The phylogenetic tree of major groups of Galliformes based on hemoglobin was similar to the tree model produced based on the amino acid sequence of lysozyme c.  相似文献   

7.
Sickle cell disease is caused by the amino acid substitution of glutamic acid to valine, which leads to the polymerization of deoxygenated sickle hemoglobin (HbS) into long strands. These strands are responsible for the sickling of red blood cells (RBCs), making blood hyper-coagulable leading to an increased chance of vaso-occlusive crisis. The conformational changes in sickled RBCs traveling through narrow blood vessels in a highly viscous fluid are critical in understanding; however, there are few studies that investigate the origins of the molecular mechanical behavior of sickled RBCs. In this work, we investigate the molecular mechanical properties of HbS molecules. A mechanical model was used to estimate the directional stiffness of an HbS molecule and the results were compared to adult human hemoglobin (HbA). The comparison shows a significant difference in strength between HbS and HbA, as well as anisotropic behavior of the hemoglobin molecules. The results also indicated that the HbS molecule experienced more irreversible mechanical behavior than HbA under compression. Further, we have characterized the elastic and compressive properties of a double stranded sickle fiber using six HbS molecules, and it shows that the HbS molecules are bound to each other through strong inter-molecular forces.  相似文献   

8.
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients with this disease.  相似文献   

9.
10.
In contrast to sheep and goats, chronic and acute anemia induced by bleeding does not appear to alter hemoglobin types in cattle. Three adult cattle twins of type A and two non-twin calves of type AB sustained anemias with hemoglobin levels of 80 % and 50 % of normal without the appearance of a new type. In addition, no changes in the chimeric red cell mixtures were observed in the twins.  相似文献   

11.
Comparative studies were made on the effect of numerous organic compounds in promoting the crystallization of human hemoglobin in 1.9 m phosphate, pH 7.0. It was found that alicyclic or benzenoid structures are essential for promoting crystallization of hemoglobin under these conditions. Hemoglobin crystals prepared in the presence of toluene differed in habit from crystals prepared in its absence. It is suggested that steric factors determine the effectiveness of organic substances in promoting the crystallization of hemoglobin and that the heme group is the binding site involved in the complex formation.The solubility of homozygous sickle cell hemoglobin HbS was found to be less than the heterozygous hemoglobins AS and AC or normal hemoglobin HbA in the presence of organic substances promoting the crystallization of hemoglobin.  相似文献   

12.
Studies of modification of hemoglobin and of sickle hemoglobin by alternative aspirins have been extended to a series of new bis esters with a variety of substituted bridging diacids and to a group of mono esters with polar acyl groups. Rates of hydrolysis of these alternative aspirins have also been examined, and they reveal that a careful balance between stability and reactivity is essential for optimal activity. Four-carbon bridging groups have been found to be particularly effective, two of these raising the minimum gelling concentration of sickle hemoglobin by as much as 100%.  相似文献   

13.
L W Fung  K L Lin  C Ho 《Biochemistry》1975,14(15):3424-3430
High-resoluiton proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate sickle cell hemoglobin. The hyperfine shifted, the ring-current shifted, and the exchangeable proton resonances suggest that the heme environment and the subunit interfaces of the sickle cell hemoglobin molecule are normal. These results suggest that the low oxygen affinity in sickle cell blood is not due to conformational alterations in the heme environment or the subunit interfaces. The C-2 proton resonances of certain histidyl residues can serve as structural probes for the surface conformation of the hemoglobin molecule. Several sharp resonances in sickle cell hemoglobin are shifted upfield from their positions in normal adult hemoglobin. These upfield shifts, which are observed in both oxy and deoxy forms of the molecule under various experimental conditions, suggest that some of the surface residues of sickle cell hemoglobin are altered and they may be in a more hydrophobic environment as compared with that of normal human adult hemoglobin. These differences in surface conformation are pH and ionic strength specific. In particular, upon the addition of organic phosphates to normal and sickle cell hemoglobin samples, the differences in their aromatic proton resonances diminish. These changes in the surface conformation may, in part, be responsible for the abnormal properties of sickle cell hemoglobin.  相似文献   

14.
Galectins are a family of secreted animal lectins with biological roles in cell adhesion and migration. In sheep, galectin 15 (LGALS15) is expressed specifically in the endometrial luminal (LE) and superficial glandular (sGE) epithelia of the uterus in concert with blastocyst elongation during the peri-implantation period. The present study examined LGALS15 expression in the uterus of cattle, goats, and pigs. Although the bovine genome contains an LGALS15-like gene, expressed sequence tags encoding LGALS15 mRNA were found only for sheep, and full-length LGALS15 cDNAs were cloned only from endometrial total RNA isolated from pregnant sheep and goats, but not pregnant cattle or pigs. Ovine and caprine LGALS15 were highly homologous at the mRNA (95%) and protein (91%) levels, and all contained a conserved carbohydrate recognition domain and RGD recognition sequence for integrin binding. Endometrial LGALS15 mRNA levels increased after Day 11 of both the estrous cycle and pregnancy, and were considerably increased after Day 15 of pregnancy in goats. In situ hybridization detected abundant LGALS15 mRNA in endometrial LE and sGE of early pregnant goats, but not in cattle or pigs. Immunoreactive LGALS15 protein was present in endometrial epithelia and conceptus trophectoderm of goat uteri and detected within intracellular crystal structures in trophectoderm and LE. Recombinant ovine and caprine LGALS15 proteins elicited a dose-dependent increase in ovine trophectoderm cell attachment in vitro that was comparable to bovine fibronectin. These results support the hypothesis that LGALS15 is uniquely expressed in Caprinae endometria and functions as an attachment factor important for peri-implantation blastocyst elongation.  相似文献   

15.
Hemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO under physiological hypoxia. The efficiency of this reaction is modulated by two intrinsic and opposing properties: availability of unliganded ferrous hemes and R-state character of the hemoglobin tetramer. Nitrite is reduced by deoxygenated ferrous hemes, such that heme deoxygenation increases the rate of NO generation. However, heme reactivity with nitrite, represented by its bimolecular rate constant, is greatest when the tetramer is in the R quaternary state. The mechanism underlying the higher reactivity of R-state hemes remains elusive. It can be due to the lower heme redox potential of R-state ferrous hemes or could reflect the high ligand affinity geometry of R-state tetramers that facilitates nitrite binding. We evaluated the nitrite reductase activity of unpolymerized sickle hemoglobin (HbS), whose oxygen affinity and cooperativity profile are equal to those of HbA, but whose heme iron has a lower redox potential. We now report that HbS exhibits allosteric nitrite reductase activity with competing proton and redox Bohr effects. In addition, we found that solution phase HbS reduces nitrite to NO significantly faster than HbA, supporting the thesis that heme electronics (i.e. redox potential) contributes to the high reactivity of R-state deoxy-hemes with nitrite. From a pathophysiological standpoint, under conditions where HbS polymers form, the rate of nitrite reduction is reduced compared with HbA and solution-phase HbS, indicating that HbS polymers reduce nitrite more slowly.  相似文献   

16.
Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin beta chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolysing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37 degrees C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the concentration of hemoglobin is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease; namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution.  相似文献   

17.
18.
1. On immunodiffusion, using an anti-human Gc antibody, serum Gc in all mammals tested revealed a partial identity with human Gc. 2. The relative cross-reactivities of serum Gc in monkeys, dogs, cats and rats with human Gc antiserum were found to be more than 70% while the serum Gc in other mammals (pigs, cattle, goats and a guinea pig) was less than 50%. 3. Testing, using the isoelectrofocusing method, showed specific patterns of Gc in the mammals. In the sera of cats and cattle, Gc polymorphisms were detected. 4. Neuraminidase treatment affected the isoelectrofocusing Gc patterns of pigs, goats and cattle, whereas those in other mammals remained unchanged.  相似文献   

19.
Sickle cell hemoglobin (HbS) prepared in argon-saturated 1.8 M phosphate buffer was rapidly mixed with carbon monoxide (CO)-saturated buffer. The binding of CO to the sickle hemoglobin and the simultaneous melting of the hemoglobin polymers were monitored by transmission spectroscopy (optical absorption and turbidity). Changes in the absorption profile were interpreted as resulting from CO binding to deoxy-HbS while reduced scattering (turbidity) was attributed to melting (depolymerization) of the HbS polymer phase. Analysis of the data provides insight into the mechanism and kinetics of sickle hemoglobin polymer melting. Conversion of normal deoxygenated, adult hemoglobin (HbA) in high concentration phosphate buffer to the HbA-CO adduct was characterized by an average rate of 83 s-1. Under the same conditions, conversion of deoxy-HbS in the polymer phase to the HbS-CO adduct in the solution phase is characterized by an average rate of 5.8 s-1 via an intermediate species that grows in with a 36 s-1 rate. Spectral analysis of the intermediate species suggests that a significant amount of CO may bind to the polymer phase before the polymer melts.  相似文献   

20.
Milk was collected for the first 21 days of lactation twice daily from dairy cows and once daily from goats, sheep, and guinea pigs. Thyroxine (T4) and triiodothyronine (T3) were extracted from 100 microliter of milk using acidified ethanol. T4 and T3 were reconstituted in 100 microliter buffer and measured by radioimmunoassay. Concentrations (ng/ml) of T4 and T3 for milk of cows, goats, sheep, and guinea pigs, respectively, were: 0.97 and 0.94, 1.24 and 0.52, 0.99 and 0.79, and 1.41 and 0.53. T4 concentration for guinea pig milk was significantly higher than for cow and sheep milk, but not for goat milk (P less than 0.05). T3 was found in higher concentration in milk of cows and sheep than in milk of goats and guinea pigs (P less than 0.05). Species differences in conversion of T4 to T3 in mammary gland cells are suggested. Summations of T4 and T3 concentrations in milk indicated no differences among the four species. Regression analyses of changes in milk production, T4 and T3 concentrations, total T4 and T3 in milk per day, and ratios of T4 to T3 revealed variations in patterns. Concentrations of T4 or T3 tended to decrease as lactation progressed over 21 days. Total T3 tended to increase, and the ratio of T4 to T3 tended to decrease. Amounts of T4 and T3 available to offspring from milk were calculated to be minor sources (4 to 7%) of total requirements for maintenance of metabolic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号