首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
1992年以来,许多国家和地区先后暴发了O139霍乱大流行。本文从微生物学和分子遗传学的角度对来自不同地区的四株O139霍乱弧菌的生物学特性进行了研究。结果表明四株O139霍乱弧菌均呈典型弧形、单端单鞭毛,培养要求不高、耐碱,固体平板上菌落呈不透明。电镜下显示有菌毛、荚膜结构。有较广的抗生素敏感谱及霍乱Heiberg氏Ⅰ群的糖发酵能力。DNAG+CMOL%测定值均在霍乱弧菌范围之内且数值接近。质粒图谱检测发现四株中有三株含有一个4.10MDa大小的质粒,而另一株不含质粒。O139霍乱弧菌的生物学特性大多数与O1群菌相似,两者重大的区别在于O139菌具荚膜结构。  相似文献   

2.
1992年9月首次分离到O139群霍乱菌株以来,亚洲多个国家和地区发生了O139群霍乱弧菌所致霍乱的流行,本文对O139群霍乱的微生物学、免疫学、分子生物学、诊断方法及流行病学等方面的研究作一简述。  相似文献   

3.
霍乱流行史上,七次世界性大流行都是由O1群霍乱弧菌所引起,但从1992年10月至1993年4月,印度次大陆却爆发了由非-O1霍乱弧菌O(139)血清型引起的霍乱样病大流行,印度及孟加拉相继报道了引起全国流行的霍乱样急性腹泻。从流行区病人分离的菌株不被O1群霍乱弧菌抗血清所凝集,也不被已知的137个血清型非-O1霍乱弧菌抗血清所凝集,因此将这一引起霍乱样病的非-O1霍乱弧菌定名为O(139)。本文就引起霍乱样病流行的O(139)霍乱弧菌的来源,本次流行概况,流行特点,O(139)流行株的特性及流行预测做一简要概述以提醒国内霍乱流行病学工作者的重视,对这一霍乱新菌型有所认识,密切监视O(139)菌型的流行动态及传播趋势,做好应有的防疫工作。  相似文献   

4.
霍乱O139型菌苗的试制   总被引:3,自引:1,他引:2  
对来自孟加拉、泰国、印度、中国四地区O139型霍乱菌株进行了毒力、免疫原性、免疫力与相互交叉保护力试验,结果显示不同地区分离的O139型霍乱弧菌其所试特性相互间无差异。用中国(93-3)株试制的菌体菌苗,其抗原性、毒性、免疫力安全性等经检定符合霍乱菌苗规程要求。鉴于O139型霍乱弧菌存在荚膜的特性,而现有的几种荚膜多糖菌苗都显示有明显的保护作用,因而,使用O139型菌苗有可能在一定程度上达到控制O139型霍乱流行的目的。  相似文献   

5.
本文就O1群霍乱弧菌与O139群霍乱弧菌在抗原构造、分泌肠毒素、耐药性和临床特点等方面作一比较,并认为O139群霍乱弧菌可能是O1群El Tor生物型的突变株。  相似文献   

6.
合成O-抗原的基因是串联在一起的一个基因族,提取O139霍乱弧菌基因组DNA,限制性内切酶EcoR2Ⅰ酶切,电泳回收4-20kb的DNA片段,构建质粒基因组文库。随机筛选重组克隆,获得一株可与O139霍乱弧菌抗菌清发生凝集反应的重组克隆,命名为大肠杆菌DH5α(pMG320)。经鉴定分析重组克隆所表达的O-抗原具有良好的免疫性及反应原性。酶切分析质粒pMG320,推知其O-抗原基因大 4.6kb.这为今后O139霍乱疫苗的研制及O139霍乱弧菌O-抗原基因的结构和功能研究提供了条件。  相似文献   

7.
酪酸梭菌和婴儿型双歧杆菌对霍乱弧菌的拮抗试验   总被引:4,自引:0,他引:4  
陆俭  张雪平  孟筱琦   《微生物学通报》2000,27(5):338-341
了解酪酸梭菌和婴儿型双歧杆菌单独及混合培养时对霍乱弧菌的拮抗作用。将酪酸梭菌LCL166和婴儿型双歧杆菌LCL172分别与霍乱弧菌O1、O139单独和混合培养,定时对霍乱弧菌计数,并对菌数的对数进行在检验。两株菌混合培养时对霍乱弧菌的抑制效果基本相同,单独和混合培养时对霍乱弧菌的拮抗作用主要由酪酸梭菌引起,酪酸梭菌具有抑制霍乱弧菌的作用。  相似文献   

8.
O139型霍乱菌苗生产用菌株93-3经过30代连续传代,与原代菌株作比较,结果表明:该菌传代前后表型生物学特征(生长特性,生化反应,特异性血清学反应,耐药性等),及遗传学特征(G+Cmol%测定)均未发现明显差异,证明该菌株具有较好的稳定性。  相似文献   

9.
O139霍乱灭活全菌体菌苗免疫后人群抗体水平测定   总被引:3,自引:0,他引:3  
O139霍乱弧菌经甲醛灭活制备而成的全菌体菌苗在广西田阳县进行临床考核。每组50名中学生经肌肉途径接种45亿菌和90亿菌两种剂量,一个月后80%接种者血清中杀弧菌抗体升高,最高可达1∶160,免疫后3个月开始缓慢下降,但仍有68-72%接种者抗体效价在1∶20以上。高剂量组半数接种者的杀弧菌抗体可维持存在6个月。血清中凝集抗体升高明显,但3个月后下降也明显。与对照组O1菌苗相比,两种抗体水平升高与下降趋势一致。采用ELISA法测定抗毒抗体,O139菌苗组与O1菌苗组结果相似,均有一定上升。上述结果提示O139霍乱灭活菌苗可作为短效应急菌苗使用  相似文献   

10.
本文综述了目前研制出的O139群口服菌苗,包括灭活菌苗,基因工程减毒活菌苗和基因工程加法菌苗;阐述了有关O139群菌苗的基础研究,包括O1群和O139群的分子遗传学关系。O139群感染的免疫机制和产生的保护机制。  相似文献   

11.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

12.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

13.
Only Vibrio cholerae strains of serotype O1 are known to cause epidemics, while non-O1 strains are associated with sporadic cases of cholera. It was therefore unexpected that the recent cholera epidemic in Asia was caused by a non-O1 strain with the serotype O139. We provide evidence that O139 arose from a strain closely related to the causative agent of the present cholera pandemic, V. cholerae O1 El Tor, by acquisition of novel DNA which was inserted into, and replaced part of, the O antigen gene cluster of the recipient strain. Part of the novel DNA was sequenced and two open reading frames (otnA and otnB) were observed, the products of which showed homology to proteins involved in capsule and O antigen synthesis, respectively. This suggests that the otnAB DNA determines the distinct antigenic properties of the O139 cell surface. The otnAB DNA was not detected in O1 strains, but was present in two non-O1 V. cholerae strains with serotypes O69 and O141. In the O69 and O139 strains the otnAB genes were located proximate to the putative insertion sequence (IS) element rfbQRS, which is associated with O antigen synthesis genes in O1 strains, and may have played a role in the insertion of the otnAB DNA in the recipient chromosome. Our results suggest that the O139 strain arose by horizontal gene transfer between a non-O1 and an O1 strain. The acquired DNA has altered the antigenic properties of the recipient O1 strain, providing a selective advantage in a region where a large part of the population is immune to O1 strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

15.
Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.  相似文献   

16.
An account of our up to date knowledge of the genetics of biosynthesis of Vibrio cholerae lipopolysaccharide (LPS) is presented in this review. While not much information is available in the literature on the genetics of biosynthesis of lipid A of V. cholerae, the available information on the characteristics and proposed functions of the corepolysaccharide (core-PS) biosynthetic genes is discussed. The genetic organizations encoding the O-antigen polysaccharides (O-PS) of V. cholerae of serogroups O1 and O139, the disease causing ones, have been described along with the putative functions of the different constituent genes. The O-PS biosynthetic genes of some non-O1, non-O139 serogroups, particularly the serogroups O37 and O22, and their putative functions have also been discussed briefly. In view of the importance of the serogroup O139, the origination of the O139 strain and the possible donor of the corresponding O-PS gene cluster have been analyzed with a view to having knowledge of (i) the mode of evolution of different serogroups and (ii) the possible emergence of pathogenic strain(s) belonging to non-O1, non-O139 serogroups. The unsolved problems in this area of research and their probable impact on the production of an effective cholera vaccine have been outlined in conclusion.  相似文献   

17.
Comparative analysis of gene fragments of six housekeeping loci, distributed around the two chromosomes of Vibrio cholerae, has been carried out for a collection of 29 V. cholerae O139 Bengal strains isolated from India during the first epidemic period (1992 to 1993). A toxigenic O1 ElTor strain from the seventh pandemic and an environmental non-O1/non-O139 strain were also included in this study. All loci studied were polymorphic, with a small number of polymorphic sites in the sequenced fragments. The genetic diversity determined for our O139 population is concordant with a previous multilocus enzyme electrophoresis study in which we analyzed the same V. cholerae O139 strains. In both studies we have found a higher genetic diversity than reported previously in other molecular studies. The results of the present work showed that O139 strains clustered in several lineages of the dendrogram generated from the matrix of allelic mismatches between the different genotypes, a finding which does not support the hypothesis previously reported that the O139 serogroup is a unique clone. The statistical analysis performed in the V. cholerae O139 isolates suggested a clonal population structure. Moreover, the application of the Sawyer's test and split decomposition to detect intragenic recombination in the sequenced gene fragments did not indicate the existence of recombination in our O139 population.  相似文献   

18.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

19.
Two major virulence factors are associated with epidemic strains (O1 and O139 serogroups) of Vibrio cholerae: cholera toxin encoded by the ctxAB genes and toxin-coregulated pilus encoded by the tcpA gene. The ctx genes reside in the genome of a filamentous phage (CTXphi), and the tcpA gene resides in a vibrio pathogenicity island (VPI) which has also been proposed to be a filamentous phage designated VPIphi. In order to determine the prevalence of horizontal transfer of VPI and CTXphi among nonepidemic (non-O1 and non-O139 serogroups) V. cholerae, 300 strains of both clinical and environmental origin were screened for the presence of tcpA and ctxAB. In this paper, we present the comparative genetic analyses of 11 nonepidemic serogroup strains which carry the VPI cluster. Seven of the 11 VPI(+) strains have also acquired the CTXphi. Multilocus sequence typing and restriction fragment length polymorphism analyses of the VPI and CTXphi prophage regions revealed that the non-O1 and non-O139 strains were genetically diverse and clustered in lineages distinct from that of the epidemic strains. The left end of the VPI in the non-O1 and non-O139 strains exhibited extensive DNA rearrangements. In addition, several CTXphi prophage types characterized by novel repressor (rstR) and ctxAB genes and VPIs with novel tcpA genes were found in these strains. These data suggest that the potentially pathogenic, nonepidemic, non-O1 and non-O139 strains identified in our study most likely evolved by sequential horizontal acquisition of the VPI and CTXphi independently rather than by exchange of O-antigen biosynthesis regions in an existing epidemic strain.  相似文献   

20.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号