首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  相似文献   

2.
Exposure to chemosensory signals from unfamiliar males can terminate pregnancy in recently mated female mice. The number of tyrosine hydroxylase-positive neurons in the main olfactory bulb has been found to increase following mating and has been implicated in preventing male-induced pregnancy block during the post-implantation period. In contrast, pre-implantation pregnancy block is mediated by the vomeronasal system, and is thought to be prevented by selective inhibition of the mate’s pregnancy blocking chemosignals, at the level of the accessory olfactory bulb. The objectives of this study were firstly to identify the level of the vomeronasal pathway at which selective inhibition of the mate’s pregnancy blocking chemosignals occurs. Secondly, to determine whether a post-mating increase in tyrosine hydroxylase-positive neurons is observed in the vomeronasal system, which could play a role in preventing pre-implantation pregnancy block. Immunohistochemical staining revealed that mating induced an increase in tyrosine-hydroxylase positive neurons in the arcuate hypothalamus of BALB/c females, and suppressed c-Fos expression in these neurons in response to mating male chemosignals. This selective suppression of c-Fos response to mating male chemosignals was not apparent at earlier levels of the pregnancy-blocking neural pathway in the accessory olfactory bulb or corticomedial amygdala. Immunohistochemical staining revealed an increase in the number of tyrosine hydroxylase-positive neurons in the accessory olfactory bulb of BALB/c female mice following mating. However, increased dopamine-mediated inhibition in the accessory olfactory bulb is unlikely to account for the prevention of pregnancy block to the mating male, as tyrosine hydroxylase expression did not increase in females of the C57BL/6 strain, which show normal mate recognition. These findings reveal an association of mating with increased dopaminergic modulation in the pregnancy block pathway and support the hypothesis that mate recognition prevents pregnancy block by suppressing the activation of arcuate dopamine release.  相似文献   

3.
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors—in contrast to the main olfactory receptors—are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic–hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.  相似文献   

4.
5.
Zonal organization of the mammalian main and accessory olfactory systems   总被引:2,自引:0,他引:2  
Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems.  相似文献   

6.
A map of pheromone receptor activation in the mammalian brain   总被引:10,自引:0,他引:10  
Belluscio L  Koentges G  Axel R  Dulac C 《Cell》1999,97(2):209-220
In mammals, the detection of pheromones is mediated by the vomeronasal system. We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb. Neurons expressing a specific receptor project to multiple glomeruli that reside within spatially restricted domains. The formation of this sensory map in the accessory olfactory bulb and the survival of vomeronasal organ sensory neurons require the expression of pheromone receptors. In addition, we observe individual glomeruli in the accessory olfactory bulb that receive input from more than one type of sensory neuron. These observations indicate that the organization of the vomeronasal sensory afferents is dramatically different from that of the main olfactory system, and these differences have important implications for the logic of olfactory coding in the vomeronasal organ.  相似文献   

7.
Major histocompatibility complex (MHC) genes in mammals (H-2 in mice) play a major role in regulating immune function. They also bestow individuality in the form of a chemical signature or odortype. At present, the respective contributions of the olfactory epithelium and the vomeronasal organ (VNO) in the recognition of individual odortypes are not well defined. We examined a possible role for the VNO in the recognition of MHC odortypes in mice by first removing the organ (VNX) and then training the mice to distinguish the odors of two congenic strains of mice that differed only in their MHC type. C57BL/6J mice (bb at H-2) and C57BL/6J-H-2(k) (kk at H-2) provided urine for sensory testing. Eight VNX and six sham-operated mice were trained to make the discrimination. Neither the number of training trials-to-criterion nor the rate of learning differed significantly for VNX and sham-operated mice. We conclude that the VNO is not necessary for learning to discriminate between MHC odortypes.  相似文献   

8.
In rodents, the nasal cavity contains two separate chemosensory epithelia, the main olfactory epithelium, located in the posterior dorsal aspect of the nasal cavity, and the vomeronasal/accessory olfactory epithelium, located in a capsule in the anterior aspect of the ventral floor of the nasal cavity. Both the main and accessory olfactory systems play a role in detection of biologically relevant odors. The accessory olfactory system has been implicated in response to pheromones, while the main olfactory system is thought to be a general molecular analyzer capable of detecting subtle differences in molecular structure of volatile odorants. However, the role of the two systems in detection of biologically relevant chemical signals appears to be partially overlapping. Thus, while it is clear that the accessory olfactory system is responsive to putative pheromones, the main olfactory system can also respond to some pheromones. Conversely, while the main olfactory system can mediate recognition of differences in genetic makeup by smell, the vomeronasal organ (VNO) also appears to participate in recognition of chemosensory differences between genetically distinct individuals. The most salient feature of our review of the literature is that there are no general rules that allow classification of the accessory olfactory system as a pheromone detector and the main olfactory system as a detector of general odorants. Instead, each behavior must be considered within a specific behavioral context to determine the role of these two chemosensory systems. In each case, one system or the other (or both) participates in a specific behavioral or hormonal response.  相似文献   

9.
We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.  相似文献   

10.
哺乳动物主要嗅觉系统和犁鼻系统信息识别的编码模式   总被引:4,自引:0,他引:4  
哺乳动物具有两套嗅觉系统, 即主要嗅觉系统和犁鼻系统。前者对环境中的大多数挥发性化学物质进行识别, 后者对同种个体释放的信息素进行识别。本文从嗅觉感受器、嗅球、嗅球以上脑区三个水平综述了这两种嗅觉系统对化学信息识别的编码模式。犁鼻器用较窄的调谐识别信息素成分, 不同于嗅上皮用分类性合并受体的方式识别气味; 副嗅球以接受相同受体输入的肾丝球所在区域为单位整合信息, 而主嗅球通过对肾丝球模块的特异性合并编码信息; 在犁鼻系统, 信息素的信号更多地作用于下丘脑区域, 引起特定的行为和神经内分泌反应。而在主要嗅觉系统, 嗅皮层可能采用时间模式编码神经元群, 对气味的最终感受与脑的不同区域有关。犁鼻系统较主要嗅觉系统的编码简单, 可能与其执行的功能较少有关。  相似文献   

11.
Wagner S  Gresser AL  Torello AT  Dulac C 《Neuron》2006,50(5):697-709
Pheromone detection by the vomeronasal organ (VNO) is thought to rely on activation of specific receptors from the V1R and V2R gene families, but the central representation of pheromone receptor activation remains poorly understood. We generated transgenic mouse lines in which projections from multiple populations of VNO neurons, each expressing a distinct V1R, are differentially labeled with fluorescent proteins. This approach revealed that inputs from neurons expressing closely related V1Rs intermingle within shared, spatially conserved domains of the accessory olfactory bulb (AOB). Mitral cell-glomerular connectivity was examined by injecting intracellular dyes into AOB mitral cells and monitoring dendritic contacts with genetically labeled glomeruli. We show that individual mitral cells extend dendrites to glomeruli associated with different, but likely closely related, V1Rs. This organization differs from the labeled line of OR signaling in the main olfactory system and suggests that integration of information may already occur at the level of the AOB.  相似文献   

12.
The distribution of NADPH-diaphorase activity was examined inthe accessory olfactory bulb of the rat using a direct histochemicaltechnique. Labeled fibers and somata were found in all layersof the accessory olfactory bulb. The entire vomeronasal nerveand all vomeronasal glomeruli were strongly labeled, contraryto the main olfactory bulb, where only dorsomedial olfactoryglomeruli displayed NADPH-diaphorase activity. NADPH-diapborasepositive neurons were identified as periglomerular cells inthe glomerular layer and external plexiform layer, horizontalcells in the internal plexiform layer, and granule cells anddeep short-axon cells in the granule cell layer. The labeleddendrites of the granule cells formed a dense neuropile in thegranule cell layer, internal plexiform layer and external plexiformlayer. The staining pattern in the accessory olfactory bulbwas more complex than what has been previously reported, anddemonstrated both similarities and differences with the distributionof NADPH-diaphorase in the main olfactory bulb.  相似文献   

13.
Developmental studies examining the changes in oxidative metabolic activity are useful for understanding how and if the vomeronasal and olfactory systems respond to stimulation during embryogenesis. Garter snakes are good candidates for examining the potential functionality of the vomeronasal system in utero. In adult garter snakes, the vomeronasal system mediates many behaviors. Neonatal garter snakes exhibit these same behaviors, and the vomeronasal system has been shown to mediate feeding behavior in neonates. Using cytochrome oxidase histochemistry, we examined changes in the oxidative metabolic activity of main and accessory olfactory bulbs of embryonic and neonatal garter snakes (Thamnophis sirtalis sirtalis and T. s. parietalis). Cytochrome oxidase staining is greater in the accessory olfactory bulb than in the main olfactory bulb of embryonic garter snakes. However, neonates show no differences in the staining of the accessory and main olfactory bulbs, suggesting a change in the stimulation of the main olfactory bulb after birth. This is the first report of cytochrome oxidase histochemistry in reptiles and in the vomeronasal system of embryonic vertebrates. © 1993 Wiley-Liss, Inc.  相似文献   

14.
The morphological development of the accessory olfactory bulb of the fetal pig was studied by classical and histo-chemical methods, and the vomeronasal organ and nasal septum were studied histochemically. Specimens were obtained from an abattoir and their ages estimated from their crown-to-rump length. The accessory olfactory bulb was structurally mature in fetuses of crown-to-rump length 21-23 cm, by which time the lectin Lycopersicum esculentum agglutinin stained the same structures as in adults (in particular, the entire sensory epithelium of the vomeronasal organ, the vomeronasal nerves, and the nervous and glomerular layers of the accessory olfactory bulb). These results suggest that the vomeronasal system of the pig may, like that of vertebrates such as snakes, be functional at birth.  相似文献   

15.
The Grueneberg ganglion (GG) is a cluster of neurones present in the vestibule of the anterior nasal cavity. Although its function is still elusive, recent studies have shown that cells of the GG transcribe the gene encoding the olfactory marker protein (OMP) and project their axons to glomeruli of the olfactory bulb, suggesting that they may have a chemosensory function. Chemosensory responsiveness of olfactory neurones in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) is based on the expression of either odorant receptors or vomeronasal putative pheromone receptors. To scrutinize its presumptive olfactory nature, the GG was assessed for receptor expression by extensive RT-PCR analyses, leading to the identification of a distinct vomeronasal receptor which was expressed in the majority of OMP-positive GG neurones. Along with this receptor, these cells expressed the G proteins Go and Gi, both of which are also present in sensory neurones of the vomeronasal organ. Odorant receptors were expressed by very few cells during prenatal and perinatal stages; a similar number of cells expressed adenylyl cyclase type III and G(olf/s), characteristic signalling elements of the main olfactory system. The findings of the study support the notion that the GG is in fact a subunit of the complex olfactory system, comprising cells with either a VNO-like or a MOE-like phenotype. Moreover, expression of a vomeronasal receptor indicates that the GG might serve to detect pheromones.  相似文献   

16.
Chiropteran vomeronasal complex and the interfamilial relationships of bats   总被引:2,自引:0,他引:2  
Within the extant orders of living mammals, the distribution of the vomeronasal organ (VNO) and associated structures is very stable, being universally present in the vast majority or universally absent in cetaceans and sirenians. Chiroptera is the most noteworthy exception, with variation in the absence or presence of the vomeronasal complex occurring even at the species level in some instances. The VNO and/or its component structures, such as the accessory olfactory bulb, were studied in serially sectioned snouts and brains from 114 genera and 292 species representing all extant chiropteran families except Myzopodidae and Antrozoidae. Taxa were scored for the following characters: (1) degree of formation of the vomeronasal epithelial tube, (2) shape of the vomeronasal cartilage, (3) occurrence of the nasopalatine duct, and (4) occurrence of the accessory olfactory bulb. To reconstruct the evolutionary history of the bat vomeronasal complex, the distributions of these four characters were mapped, using the computer program MacClade, onto chiropteran phylogenies in the literature derived from other data sets. In all phylogenies, these four characters exhibit a high degree of homoplasy, only part of which is accounted for by several polymorphic taxa. However, perhaps the most remarkable result is that in the most parsimonious solutions the absence of the vomeronasal epithelial tube and accessory olfactory bulb is identified as primitive for Chiroptera, with both structures reevolving numerous times: such a scenario would be unique to bats among mammals. An alternative, though less parsimonious interpretation, which does not require reevolution of this very complex system, is that a well-developed vomeronasal epithelial tube is primitive for Chiroptera, as in nearly all other orders of mammals, but has been reduced or lost in the majority of families. Explication of the peculiar evolutionary history of the vomeronasal system in bats awaits studies on the adult morphology in the more than 630 species not yet examined and, in particular, on ontogeny, which to date is known for only a handful of taxa.A preliminary account of this research was presented at the Tenth International Bat Research Conference and Twenty-Fifth North American Bat Research Symposium held at Boston University, Massachusetts, on 6–11 August 1995.  相似文献   

17.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

18.
The main olfactory and the vomeronasal systems are the two systems by which most vertebrates detect chemosensory cues that mediate social behavior. Much research has focused on how one system or the other is critical for particular behaviors. This has lead to a vision of two distinct and complexly autonomous olfactory systems. A closer look at research over the past 30 years reveals a different picture however. These two seemingly distinct systems are much more integrated than previously thought. One novel set of chemosensory cues in particular (MHC Class I peptide ligands) can show us how both systems are capable of detecting the same chemosensory cues, through different mechanisms yet provide the same general information (genetic individuality). Future research will need to now focus on how two seemingly distinct chemosensory systems together detect pheromones and mediate social behaviors. Do these systems work independently, synergistically or competitively in communicating between individuals of the same species?  相似文献   

19.
Lectin binding patterns in the olfactory bulb of the mouse were investigated using 12 biotinylated lectins. Three, with specificities for galactose, N-acetylgalactosamine and L-fucose, stained only the nervous and glomerular layers of the accessory olfactory bulb; four, with specificities for galactose or N-acetylglucosamine, stained these layers in both the accessory and the main olfactory bulbs; three, with specificities for N-acetylgalactosamine or L-fucose, effected general staining with little contrast between the background and the accessory olfactory bulb or other structures; the remaining two, both of them specific for mannose, stained no part of the tissue studied. In the nervous and glomerular layers of the accessory olfactory bulb six lectins stained the anterior and posterior halves with different intensities and two of these six similarly differentiated between rostral and caudal regions of the posterior half. We conclude that: (i) three lectins binding to different monosaccharides are specific stains for the vomeronasal system when used in this area of the mouse brain; (ii) it may be appropriate to distinguish three parts in the mouse accessory olfactory bulb, instead of the hitherto generally accepted two.  相似文献   

20.
The main olfactory and the accessory olfactory systems are both anatomically and functionally distinct chemosensory systems. The primary sensory neurones of the accessory olfactory system are sequestered in the vomeronasal organ (VNO), where they express pheromone receptors, which are unrelated to the odorant receptors expressed in the principal nasal cavity. We have identified a 240 kDa glycoprotein (VNO(240)) that is selectively expressed by sensory neurones in the VNO but not in the main olfactory neuroepithelium of mouse. VNO(240) is first expressed at embryonic day 20.5 by a small subpopulation of sensory neurones residing within the central region of the crescent-shaped VNO. Although VNO(240) was detected in neuronal perikarya at this age, it was not observed in the axons in the accessory olfactory bulb until postnatal day 3.5. This delayed appearance in the accessory olfactory bulb suggests that VNO(240) is involved in the functional maturation of VNO neurones rather than in axon growth and targeting to the bulb. During the first 2 postnatal weeks, the population of neurones expressing VNO(240) spread peripherally, and by adulthood all primary sensory neurones in the VNO appeared to be expressing this molecule. Similar patterns of expression were also observed for NOC-1, a previously characterized glycoform of the neural cell adhesion molecule NCAM. To date, differential expression of VNO-specific molecules has only been reported along the rostrocaudal axis or at different apical-basal levels in the neuroepithelium. This is the first demonstration of a centroperipheral wave of expression of molecules in the VNO. These results indicate that mechanisms controlling the molecular differentiation of VNO neurones must involve spatial cues organised, not only about orthogonal axes, but also about a centroperipheral axis. Moreover, expression about this centroperipheral axis also involves a temporal component because the subpopulation of neurones expressing VNO(240) and NOC-1 increases during postnatal maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号