首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major component of the amyloid deposition that characterizes Alzheimer's disease is the 4-kDa beta A4 protein, which is derived from a much larger amyloid protein precursor (APP). A procedure for the complete purification of APP from human brain is described. The same amino terminal sequence of APP was found in two patients with Alzheimer's disease and one control subject. Two major forms of APP were identified in human brain with apparent molecular masses of 100-110 kDa and 120-130 kDa. Soluble and membrane fractions of brain contained nearly equal amounts of APP in both humans and rats. Immunoprecipitation with carboxyl terminus-directed antibodies indicates that the soluble forms of APP are truncated. Carboxyl terminus truncation of membrane-associated forms of human brain APP was also found to occur during postmortem autolysis. The availability of purified human brain APP will facilitate the investigation of its normal function and the events that lead to its abnormal cleavage in patients with Alzheimer's disease.  相似文献   

2.
3.
Abstract: No single protease has emerged that possesses all the expected properties for β-secretase, including brain localization, appropriate peptide cleavage specificity, and the ability to cleave amyloid precursor protein exactly at the amino-terminus of β-amyloid peptide. We have isolated and purified a brain-derived activity that cleaves the synthetic peptide substrate SEVKMDAEF between methionine and aspartate residues, as required to generate the amino-terminus of β-amyloid peptide. Its molecular size of 55–60 kDa and inhibitory profile indicate that we have purified the metalloprotease EC 3.4.24.15. We have compared the sequence specificity of EC 3.4.24.15, cathepsin D, and cathepsin G for their ability to cleave the model peptide SEVKMDAEF or related peptides that contain substitutions reported to modulate β-amyloid peptide production. We have also tested the ability of these enzymes to form carboxy-terminal fragments from full-length, membrane-embedded amyloid precursor protein substrate or amyloid precursor protein that contains the Swedish KM → NL mutation. The correct cleavage was tested with an antibody specific for the free amino-terminus of β-amyloid peptide. Our results exclude EC 3.4.24.15 as a candidate β-secretase. Although cathepsin G cleaves the model peptide correctly, it displays poor ability to cleave the Swedish KM → NL peptide and does not generate carboxy-terminal fragments that are immunoreactive with amino-terminal-specific antiserum. Cathepsin D does not cleave the model peptide or show specificity for wild-type amyloid precursor protein; however, it cleaves the Swedish "NL peptide" and "NL precursor" substrates appropriately. Our results suggest that cathepsin D could act as β-secretase in the Swedish type of familial Alzheimer's disease and demonstrate the importance of using full-length substrate to verify the sequence specificity of candidate proteases.  相似文献   

4.
M Goedert 《The EMBO journal》1987,6(12):3627-3632
Clones for the amyloid beta protein precursor gene were isolated from a cDNA library prepared from the frontal cortex of a patient who had died with a histologically confirmed diagnosis of Alzheimer's disease; they were used to investigate the tissue and cellular distribution of amyloid beta protein precursor mRNA in brain tissues from control patients and from Alzheimer's disease patients. Amyloid beta protein precursor mRNA was expressed in similar amounts in all control human brain regions examined, but a reduction of the mRNA level was observed in the frontal cortex from patients with Alzheimer's disease. By in situ hybridization amyloid beta protein precursor mRNA was present in granule and pyramidal cell bodies in the hippocampal formation and in pyramidal cell bodies in the cerebral cortex. No specific labelling of glial cells or endothelial cells was found. The same qualitative distribution was observed in tissues from control patients and from patients with Alzheimer's disease. Senile plaque amyloid thus probably derives from neurones. The tissue distribution of amyloid beta protein precursor mRNA and its cellular localization demonstrate that its expression is not confined to the brain regions and cells that exhibit the selective neuronal death characteristic of Alzheimer's disease.  相似文献   

5.
A approximately 40-residue fragment of the beta-amyloid precursor protein (APP) is progressively deposited in the extracellular spaces of brain and blood vessels in Alzheimer's disease (AD), Down's syndrome and aged normal subjects. Soluble, truncated forms of APP lacking the carboxyl terminus are normally secreted from cultured cells expressing this protein and are found in cerebrospinal fluid. Here, we report the detection of a similar soluble APP isoform in human plasma. This approximately 125 kDa protein, which was isolated from plasma by Affi-Gel Blue chromatography or dialysis-induced precipitation, comigrates with the larger of the two major soluble APP forms present in spinal fluid and contains the Kunitz protease inhibitor insert. It thus derives from the APP751 and APP770 precursors; a soluble form of APP695 has not yet been detected in plasma. The approximately 125 kDa plasma form lacks the C-terminal region and is unlikely to serve as a precursor for the beta-protein that forms the amyloid in AD.  相似文献   

6.
The human amyloid beta protein is a major component of brain amyloid found in patients with Alzheimer's disease. As an initial step to understand the biological function of its precursor protein, we have isolated cDNA for the mouse homolog of the human beta protein precursor. Comparison of the predicted amino acid sequence with that of human revealed a quite high degree of homology (96.8%), and the calculated evolutionary rate of the mRNA at amino acid substitution site was relatively low (0.1 x 10(-9)/site/year). The mRNA was abundant in brain and kidney, and also detected in other tissues at low level. These results indicated that this protein is highly conserved through mammalian evolution and may be involved in a basic biological process(es).  相似文献   

7.
C R Abraham  D J Selkoe  H Potter 《Cell》1988,52(4):487-501
Two approaches--molecular cloning and immunochemical analysis--have identified one of the components of Alzheimer's disease amyloid deposits as the serine protease inhibitor alpha 1-antichymotrypsin. An antiserum against isolated Alzheimer amyloid deposits detected immunoreactivity in normal liver. The antiserum was then used to screen a liver cDNA expression library, yielding three related clones. DNA sequence analysis showed that these clones code for alpha 1-antichymotrypsin. Antisera against purified alpha 1-antichymotrypsin stained Alzheimer amyloid deposits, both in situ and after detergent extraction from brain. The anti-amyloid antiserum recognizes at least two distinct epitopes in alpha 1-antichymotrypsin, further supporting the presence of this protein in Alzheimer amyloid deposits. In addition to being produced in the liver and released into the serum, alpha 1-antichymotrypsin is expressed in Alzheimer brain, particularly in areas that develop amyloid lesions. Models by which alpha 1-antichymotrypsin could contribute to the development of Alzheimer amyloid deposits are discussed.  相似文献   

8.
Cerebrovascular amyloidosis belongs to the pathological hallmarks of Alzheimer's disease brains. Although definite proof is still lacking, it is very well possible that the amyloid and its associated proteins are produced locally in the brain. In this paper we describe the development of a model system of cultured human brain pericytes to study the mechanisms of microvascular amyloid formation in vitro. These cultured cells may serve to study several aspects of cerebrovascular amyloidosis, which include the production of the amyloid precursor protein and of amyloid beta-protein-associated proteins as well as cytotoxic effects of amyloid beta-protein on perivascular cells. We demonstrated that pericytes produce and metabolize the amyloid precursor protein, and that they produce amyloid beta-protein-associated proteins, such as heparan sulfate proteoglycans, apolipoprotein E, and complement factor C1q. They are also prone to cellular degeneration after treatment with amyloid beta-protein, which is accompanied by increased expression of a number of amyloid beta-protein-associated proteins. This may be an important mechanism to explain the cell death observed in vivo. Our data indicate that this cell culture model of human brain pericytes provides a useful and pathophysiologically relevant tool to study cerebrovascular amyloidosis.  相似文献   

9.
Neuritic plaque core amyloid protein in Alzheimer's disease brain tissue was investigated for the extent of amino acid racemization. Long-lived human proteins exhibit racemization of certain amino acids over the course of a human lifetime. Purified core amyloid was found to contain relatively large proportions of D-aspartate and D-serine, suggesting that neuritic plaque amyloid is derived from a long-lived precursor protein. Alternatively, racemization of protein amino acids may be abnormally accelerated in Alzheimer's disease.  相似文献   

10.
The cloned cDNA encoding the rat cognate of the human A4 amyloid precursor protein was isolated from a rat brain library. The predicted primary structure of the 695-amino acid-long protein displays 97% identity to its human homologue shown previously to resemble an integral membrane protein. The protein was detected in rodent brain and muscle by Western blot analysis. Using in situ hybridization and immunocytochemistry on rat brain sections, we discovered that rat amyloidogenic glycoprotein (rAG) and its mRNA are ubiquitously and abundantly expressed in neurons indicating a neuronal original for the amyloid deposits observed in humans with Alzheimer's disease (AD). The protein appears in patches on or near the plasma membranes of neurons suggesting a role for this protein in cell contact. Highest expression was seen in rat brain regions where amyloid is deposited in AD but also in areas which do not contain deposits in AD. Since amyloid deposits are rarely observed in rat brain, we conclude that high expression of AG is not the sole cause of amyloidosis.  相似文献   

11.
The amyloid fibrils deposited in cerebral vessel walls and senile plaques in Alzheimer's disease are polymeric forms of a 4 kDa fragment produced by proteolysis of a putative precursor protein (APP). Using antibodies to several fragments of the deduced precursor, we were able to demonstrate the presence of APP in senile plaques, brain extracts and cerebrospinal fluid. Membrane-associated APP is detected as a group of 105-135 kDa proteins while soluble APP is predominantly 105 kDa, does not react with an anti C-terminal antibody, and is 10 kDa shorter than the membrane-bound APP. Amino terminal sequence of the tissue 105 kDa protein indicates that APP begins at residue 18 of the cDNA sequence. These findings imply that i) two forms of APP are detected: membrane-bound and secreted, and ii) APP can be processed in situ.  相似文献   

12.
13.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

14.
The cerebral amyloid deposited in Alzheimer's disease (AD) contains a 4.2 kDa beta amyloid polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). Three beta APP mRNAs encoding proteins of 695, 751, and 770 amino acids have previously been identified. In each of these, there is a single membrane-spanning domain close to the carboxyl-terminus of the beta APP, and the 42 amino acid beta AP sequence extends from within the membrane-spanning domain into the large extracellular region of the beta APP. We raised rabbit antisera to a peptide corresponding to amino acids 45-62 near the amino-terminus of the beta APP. We show that these antisera detect the beta APP by demonstrating that they (i) label a set of approximately 120 kDa membrane-associated proteins in human brain previously detected by antisera to the carboxyl-terminus of beta APP and (ii) label a set of approximately 120 kDa membrane-associated proteins that are selectively overexpressed in cells transfected with a full length beta APP expression construct. The beta APP45-62 antisera specifically stain senile plaques in AD brains. This finding, along with the previous demonstration that antisera to the carboxyl-terminus of the beta APP label senile plaques, indicates that both near amino-terminal and carboxyl-terminal domains of the beta APP are present in senile plaques and suggests that proteolytic processing of the full length beta APP molecule into insoluble amyloid fibrils occurs in a highly localized fashion at the sites of amyloid deposition in AD brains.  相似文献   

15.
Cell culture studies have shown that the Alzheimer amyloid precursor protein (APP) is secreted after full-length APP is cleaved by a putative secretase at the Lys16-Leu17 bond (secretase cleavage I) of the amyloid peptide sequence. Because this cleavage event is incompatible with amyloid production, it has been assumed that secreted APP cannot serve as a precursor of the amyloid depositions observed in Alzheimer's disease. Here we show that in neuronally differentiated PC12 cells and human kidney 293 cell cultures a portion of the secreted extracytoplasmic APP reacted specifically with both a monoclonal antibody recognizing amyloid protein residues Leu17-Val24 and a polyclonal antiserum directed against amyloid protein residues Ala21-Lys28. Furthermore, this APP failed to react with antisera recognizing the cytoplasmic domain of the full-length protein. These data indicate the presence of an alternative APP secretase cleavage site (secretase cleavage II), C-terminal to the predominant secretase cleavage I. Depending on the exact location of cleavage site II, potentially amyloidogenic secreted APP species may be produced.  相似文献   

16.
Familial amyloidosis, Finnish type, is clinically characterized by cranial neuropathy and lattice corneal dystrophy. It is an autosomal dominant form of systemic amyloidosis with small deposits of congophilic material occurring in most tissues, particularly in association with blood vessel walls and basement membranes. Amyloid fibrils were extracted from the kidney of patient VUO, and rabbit antiserum raised against the 12 kDa purified amyloid subunit displayed strong immunohistochemical reactivity with the amyloid deposits. The amino terminal sequence of this 12 kDa amyloid protein (ATEVPVSWESFNNGD) showed homology with gelsolin (or actin depolymerizing factor), a 93 kDa plasma protein. The amyloid peptide is a degradation product, starting at position 173, of the gelsolin molecule.  相似文献   

17.
The 39-43 amino acid beta amyloid protein (A beta) that deposits as amyloid in the brains of patients with Alzheimer's disease (AD) is encoded as an internal sequence within a larger membrane-associated protein known as the amyloid protein precursor (APP). In cultured cells, the APP is normally cleaved within the A beta to generate a large secreted derivative and a small membrane-associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire A beta. Our study was designed to determine whether the soluble APP derivatives in human brain end within the A beta as described in cell culture or whether AD brain produces potentially amyloidogenic soluble derivatives that contain the entire A beta. We find that both AD and control brain contain nonamyloidogenic soluble derivatives that end at position 15 of the A beta. We have been unable to detect any soluble derivatives that contain the entire A beta in either the AD or control brain.  相似文献   

18.
To study amyloid beta-protein (A beta) production and aggregation in vivo, we created two transgenic (Tg) mouse lines expressing the C-terminal 100 amino acids of human amyloid precursor protein (APP): Tg C100.V717F and Tg C100.WT. Western blot analysis showed that human APP-C100 and A beta were produced in brain and some peripheral tissues and A beta was produced in serum. Using antibodies specific for the A beta C terminus we found that Tg C100.V717F produced a 1.6-fold increase in A beta42/A beta40 compared with Tg C100.WT. Approximately 30% of total brain A beta (approximately 122 ng/g of wet tissue) was water-soluble. The remaining 70% of A beta partitioned into the particulate fraction and was completely sodium dodecyl sulfate-soluble. In contrast, human Alzheimer's disease brain has predominantly sodium dodecyl sulfate-insoluble A beta. Immunohistochemistry with an A beta(5-8) antibody showed that A beta or A beta-containing fragments accumulated intracellularly in the hippocampus of aged Tg C100.V717F mice. The soluble A beta levels in Tg brain are similar to those in normal human brain, and this may explain the lack of microscopic amyloid deposits in the Tg mice. However, this mouse model provides a system to study the intracellular processing and accumulation of A beta or A beta-containing fragments and to screen for compounds directed at the gamma-secretase activity.  相似文献   

19.
R L Neve  E A Finch  L R Dawes 《Neuron》1988,1(8):669-677
  相似文献   

20.
Transforming growth factors beta (TGF beta) are multifunctional polypeptides that participate in regulation of growth, differentiation and function of many cell types. The mature TGF beta molecule is a 25 kDa protein composed of two 12.5 kDa monomers linked by disulfide bonds. Human glioblastoma cells secrete biologically active TGF beta 2. Here we report that in addition to the free form of TGF beta 2, a stable complex between a approximately 110 kDa binding protein and TGF beta 2 was isolated from glioblastoma cell supernatant. This binding protein was purified and was found to show sequence identity to part of the beta amyloid precursor protein (beta APP), to be specifically labeled by several different antisera to beta APP, and to be affinity labeled with TGF beta by crosslinking. The complex formation between TGF beta and beta APP may have important implications in regulation of biological activity of the two proteins and in delivery or clearance of TGF beta and beta APP in the brain and other compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号