首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The mechanism by which specific hormonal regulation of gene expression is attained in vivo is a paradox in that several of the steroid receptors recognize the same DNA element in vitro. We have characterized a complex enhancer of the mouse sex-limited protein (Slp) gene that is activated exclusively by androgens but not by glucocorticoids in transfection. Potent androgen induction requires both the consensus hormone response element (HRE) and auxiliary elements residing within the 120-bp DNA fragment C' delta 9. Multiple nonreceptor factors are involved in androgen specificity, with respect to both the elevation of androgen receptor activity and the inactivity of glucocorticoid receptor (GR), since clustered base changes at any of several sites reduce or abolish androgen induction and do not increase glucocorticoid response. However, moving the HRE as little as 10 bases away from the rest of the enhancer allows GR to function, suggesting that GR is repressed by juxtaposition to particular factors within the androgen-specific complex. Surprisingly, some sequence variations of the HRE itself, within the context of C' delta 9, alter the stringency of specificity, as well as the magnitude, of hormonal response. These HRE sequence effects on expression correspond in a qualitative manner with receptor binding, i.e., GR shows a threefold difference in affinities for HREs amongst which androgen receptor does not discriminate. Altering the HRE orientation within the enhancer also affects hormonal stringency, increasing glucocorticoid but not androgen response. The effect of these subtle variations suggests that they alter receptor position with respect to other factors. Thus, protein-protein interactions that elicit specific gene regulation are established by the array of DNA elements in a complex enhancer and can be modulated by sequence variations within these elements that may influence selection of precise protein contacts.  相似文献   

4.
5.
6.
Multiple components of a complex androgen-dependent enhancer.   总被引:8,自引:0,他引:8  
Sex-limited protein (Slp) is expressed in adult male mice. A 160-basepair fragment 2 kilobases upstream of the gene serves as an androgen-dependent enhancer of chloramphenicol acetyltransferase expression in transient transfection assays in cells with endogenous or cotransfected androgen receptor. One element that is necessary, but not sufficient, for induction is a consensus glucocorticoid (or hormone) response element (HRE). This element binds to the mouse androgen receptor in vitro, but with apparent weak affinity. Induction by the HRE is greatly augmented by an accessory sequence within the 160 basepairs, suggesting that cooperative interactions confer strong response to androgen. Additional elements within the enhancer modulate induction, positively or negatively, and exhibit cell-specific behavior. Of particular interest are two degenerate HREs that are adjacent to the consensus sequence; they show no independent activity, but are functionally significant in conjunction with other elements. The complexity of this enhancer may reflect biological mechanisms that ensure specificity of hormonal response and allow gene expression to respond to changes in hormone concentration.  相似文献   

7.
8.
9.
10.
11.
Mutation of a small number of amino acids in the DNA-binding domain of the estrogen receptor to the corresponding sequence of the glucocorticoid receptor switches the specificity of the receptor in transactivation assays (Mader, S., Kumar, V., de Verneuil, H., and Chambon, P. (1989) Nature 338, 271-274). We have made the corresponding reciprocal mutations in the context of the glucocorticoid receptor DNA-binding domain and studied the binding of wild type and mutant purified proteins to palindromic glucocorticoid and estrogen response elements as well as to elements of intermediate sequence, using gel mobility shift assays. We show here that a protein with two altered amino acids binds glucocorticoid and estrogen response elements with a low but equal affinity, whereas a protein with an additional changed residue has a high affinity for estrogen response elements but still retains a considerable affinity for glucocorticoid response elements. Using binding sites of intermediate sequence we have further characterized the interaction with DNA. The in vitro DNA binding results are confirmed by in vivo transactivation assays in yeast. Finally we suggest a testable model for amino acid/base pair interactions involved in recognition by the glucocorticoid receptor DNA-binding domain of its target sequence.  相似文献   

12.
13.
14.
Regulation of the mouse sex-limited protein (Slp) gene is unusual in that hormone response is conferred by the 5′ LTR of an upstream inserted provirus, dubbed the imposon (imp1). In a search for additional genes whose regulation has been affected by retrotransposition events, we isolated two partial proviral elements by stringent screening of a mouse genomic library. One clone (imp2) contained a portion of the envelope gene and a 3′ LTR that was nearly identical to the 3′ LTR of imp1; this similarity extended to insertion into a B1 repetitive element. The second proviral clone (imp3) contained a 5′ LTR and associated coding sequences, but lacked its 3′ LTR; the LTR of imp3 differed by 12% from the imp1 sequence. To assess potential hormone response, proviral enhancer regions cloned into reporter vectors were tested in transfection. The imp2 enhancer was similar in behavior to imp1, conferring both androgen and glucocorticoid induction in one fragment context and an androgen-specific response in another. In contrast, the imp3 enhancer allowed high expression in the absence of hormone and was less responsive to steroids in general and androgen in particular. These three proviral elements define a small family of steroid responsive proviruses in the mouse genome, and at least one member has had a lasting impact on an endogenous gene's regulation. Received: 29 April 1997 / Accepted: 14 July 1997  相似文献   

15.
16.
The agonist-induced androgen receptor NH(2)- and COOH-terminal (N/C) interaction is mediated by the FXXLF and WXXLF NH(2)-terminal motifs. Here we demonstrate that agonist-dependent transactivation of prostate-specific antigen (PSA) and probasin enhancer/promoter regions requires the N/C interaction, whereas the sex-limited protein gene and mouse mammary tumor virus long terminal repeat do not. Transactivation of PSA and probasin response regions also depends on activation function 1 (AF1) in the NH(2)-terminal region but can be increased by binding an overexpressed p160 coactivator to activation function 2 (AF2) in the ligand binding domain. The dependence of the PSA and probasin enhancer/promoters on the N/C interaction for transactivation allowed us to demonstrate that in the presence of androgen, the WXXLF motif with the sequence (433)WHTLF(437) contributes as an inhibitor to AR transactivation. We further show that like the FXXLF and LXXLL motifs, the WXXLF motif interacts in the presence of androgen with AF2 in the ligand binding domain. Sequence comparisons among species indicate greater conservation of the FXXLF motif compared with the WXXLF motif, paralleling the functional significance of these binding motifs. The data provide evidence for promoter-specific differences in the requirement for the androgen receptor N/C interaction and in the contributions of AF1 and AF2 in androgen-induced gene regulation.  相似文献   

17.
Functional properties of the DNA-binding domain of the human glucocorticoid receptor were investigated using high titer polyclonal antibodies produced against single synthetic peptides or a mixture of peptides whose sequences were derived from the DNA-binding domain of steroid receptor proteins. Three of seven antisera recognized both native and denatured forms of the glucocorticoid receptor, although considerably lower antisera dilutions were required for antibody binding to native receptor. Activation of the glucocorticoid receptor to its DNA-binding form was required for antibody recognition of the native receptor. Antisera to the second finger region of the DNA-binding domain caused a portion of the activated 4S glucocorticoid receptor to sediment as 7 or 9S in sucrose gradients containing 0.4 M KCl, but did not alter the sedimentation of the nontransformed 8S receptor. Specificity of the glucocorticoid receptor-antibody interaction was demonstrated by loss of reactivity after preabsorption with peptide antigens. Antisera that interacted specifically with the glucocorticoid receptor inhibited DNA binding of the activated receptor by as much as 80%. Thus, antibody probes directed against DNA-binding domain sequences provide immunological evidence that glucocorticoid receptor activation exposes the DNA-binding region of the receptor.  相似文献   

18.
19.
20.
A fragment of the rat androgen receptor (amino acids 533-637) containing the DNA-binding domain was produced in Escherichia coli as a fusion product with protein A of Staphylococcus aureus. The fusion protein was purified on IgG-Sepharose, a method that does not involve the use of denaturing agents. Approximately 4 mg of fusion protein was obtained from 500 ml of bacterial culture. In gel shift assays, the recombinant DNA-binding domain displays an affinity for a fragment of the long terminal repeat of mouse mammary tumor virus and for an intronic fragment of the gene coding for the C3 component of the androgen-regulated rat prostatic binding protein. In a DNase I footprinting assay, the fusion protein protects a sequence in the C3 fragment that has previously been shown to act as a functional androgen response element. Interestingly, a single base pair mutation in the response element, which abolishes androgen inducibility, also destroys the ability to interact with the recombinant androgen receptor DNA-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号