首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
14-3-3 proteins interact with a novel phosphothreonine motif (Y(946)pTV) at the extreme C-terminal end of the plant plasma membrane H(+)-ATPase molecule. Phosphorylation-independent binding of 14-3-3 protein to the YTV motif can be induced by the fungal phytotoxin fusicoccin. The molecular basis for the phosphorylation-independent interaction between 14-3-3 and H(+)-ATPase in the presence of fusicoccin has been investigated in more detail. Fusicoccin binds to a heteromeric receptor that involves both 14-3-3 protein and H(+)-ATPase. Binding of fusicoccin is dependent upon the YTV motif in the H(+)-ATPase and, in addition, requires residues further upstream of this motif. Apparently, 14-3-3 proteins interact with the unusual epitope in H(+)-ATPase via its conserved amphipathic groove. This implies that very diverse epitopes bind to a common structure in the 14-3-3 protein.  相似文献   

3.
The H(+)-ATPase is a key enzyme for the establishment and maintenance of plasma membrane potential and energization of secondary active transport in the plant cell. The phytotoxin fusicoccin induces H(+)-ATPase activation by promoting the association of 14-3-3 proteins. It is still unclear whether 14-3-3 proteins can represent natural regulators of the proton pump, and factors regulating 14-3-3 binding to the H(+)-ATPase under physiological conditions are unknown as well. In the present study in vivo and in vitro evidence is provided that 14-3-3 proteins can associate with the H(+)-ATPase from maize roots also in a fusicoccin-independent manner and that the interaction depends on the phosphorylation status of the proton pump. Furthermore, results indicate that phosphorylation of H(+)-ATPase influences also the fusicoccin-dependent interaction of 14-3-3 proteins. Finally, a protein phosphatase 2A able to impair the interaction between H(+)-ATPase and 14-3-3 proteins was identified and partially purified from maize root.  相似文献   

4.
The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth.  相似文献   

5.
To allow successful germination and growth of a pollen tube, mature and dehydrated pollen grains (PGs) take up water and have to adjust their turgor pressure according to the water potential of the surrounding stigma surface. The turgor pressure of PGs of lily (Lilium longiflorum) was measured with a modified pressure probe for simultaneous recordings of turgor pressure and membrane potential to investigate the relation between water and electrogenic ion transport in osmoregulation. Upon hyperosmolar shock, the turgor pressure decreased, and the plasma membrane (PM) hyperpolarizes in parallel, whereas depolarization of the PM was observed with hypoosmolar treatment. An acidification and alkalinization of the external medium was monitored after hyper- and hypoosmotic treatments, respectively, and pH changes were blocked by vanadate, indicating a putative role of the PM H(+) ATPase. Indeed, an increase in PM-associated 14-3-3 proteins and an increase in PM H(+) ATPase activity were detected in PGs challenged by hyperosmolar medium. We therefore suggest that in PGs the PM H(+) ATPase via modulation of its activity by 14-3-3 proteins is involved in the regulation of turgor pressure.  相似文献   

6.
The plasma membrane H(+)-ATPase is activated by blue light with concomitant binding of the 14-3-3 protein to the C terminus in guard cells. Because several isoforms of the 14-3-3 protein are expressed in plants, we determined which isoform(s) bound to the H(+)-ATPase in vivo. Four cDNA clones (vf14-3-3a, vf14-3-3b, vf14-3-3c, and vf14-3-3d) encoding 14-3-3 proteins were isolated from broad bean (Vicia faba) guard cells. Northern analysis revealed that mRNAs encoding vf14-3-3a and vf14-3-3b proteins were expressed predominantly in guard cells. The 14-3-3 protein that bound to the H(+)-ATPase in guard cells had the same molecular mass as the recombinant vf14-3-3a protein. The H(+)-ATPase immunoprecipitated from mesophyll cell protoplasts, which had been stimulated by fusicoccin, coprecipitated with the 32.5-kD 14-3-3 protein, although three 14-3-3 isoproteins were found in mesophyll cell protoplasts. Digestions of the bound 14-3-3 protein and recombinant vf14-3-3a with cyanogen bromide gave the identical migration profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but that of vf14-3-3b gave a different profile. Mass profiling of trypsin-digested 14-3-3 protein bound to the H(+)-ATPase gave the predicted peptide masses of vf14-3-3a. Far western analysis revealed that the H(+)-ATPase had a higher affinity for vf14-3-3a than for vf14-3-3b. These results suggest that the 14-3-3 protein that bound to the plasma membrane H(+)-ATPase in vivo is vf14-3-3a and that it may play a key role in the activation of H(+)-ATPase in guard cells.  相似文献   

7.
Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo from entering and completing the growth phase. Genetic and physiological studies have identified many steps in the ABA signal transduction cascade, but how it prevents radicle elongation is still not clear. For elongation growth to proceed, uptake of osmotically active substances (mainly K(+)) is essential. Therefore, we have addressed the question of how the activity of K(+) permeable ion channels in the plasma membrane of radicle cells is regulated under conditions of slow (+ABA) and rapid germination (+fusicoccin). We found that ABA arrests radicle growth, inhibits net K(+) uptake and reduces the activity of K(+) (in) channels as measured with the patch-clamp technique. In contrast, fusicoccin (FC), a well-known stimulator of germination, stimulates radicle growth, net K(+) uptake and reduces the activity of K(+) (out) channels. Both types of channels are under the control of 14-3-3 proteins, known as integral components of signal transduction pathways and instrumental in FC action. Intriguingly, 14-3-3 affected both channels in an opposite fashion: whereas K(+) (in) channel activity was fully dependent upon 14-3-3 proteins, K(+) (out) channel activity was reduced by 14-3-3 proteins by 60%. Together with previous data showing that 14-3-3 proteins control the activity of the plasma membrane H(+)-ATPase, this makes 14-3-3 a prime candidate for molecular master regulator of the cellular osmo-pump. Regulation of the osmo-pump activity by ABA and FC is an important mechanism in controlling the growth of the embryonic root during seed germination.  相似文献   

8.
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in turgor, was found to activate the H+ efflux 5-fold. The same increment was observed in the number of high-affinity fusicoccin-binding sites in isolated plasma membranes; the 14-3-3 content in the membranes increased 2- to 3-fold, while the H+-ATPase activity changed only slightly. The data obtained indicate that osmotic regulation of H+-ATPase in the plant plasma membrane is achieved via modulation of the coupling between H+ transport and ATP hydrolysis, and that such regulation involves 14-3-3 proteins. Received: 10 February 2000 / Accepted: 31 March 2000  相似文献   

9.
Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase.  相似文献   

10.
The fungal phytotoxin fusicoccin stabilizes the interaction between the C-terminus of the plant plasma membrane H(+)-ATPase and 14-3-3 proteins, thus leading to permanent activation of the proton pump. This results in an irreversible opening of the stomatal pore, followed by wilting of plants. Here, we report the crystal structure of the ternary complex between a plant 14-3-3 protein, fusicoccin and a phosphopeptide derived from the C-terminus of the H(+)-ATPase. Comparison with the corresponding binary 14-3-3 complexes indicates no major conformational change induced by fusicoccin. The compound rather fills a cavity in the protein-phosphopeptide interaction surface. Isothermal titration calorimetry indicates that the toxin alone binds only weakly to 14-3-3 and that peptide and toxin mutually increase each others' binding affinity approximately 90-fold. These results are important for herbicide development but might have general implications for drug development, since rather than inhibiting protein-protein interactions, which is difficult to accomplish, it might be easier to reverse the strategy and stabilize protein-protein complexes. As the fusicoccin interaction shows, only low-affinity interactions would be required for this strategy.  相似文献   

11.
12.
H(+)-ATPase, the key enzyme for the energization of ion and nutrient transport across the plasma membrane, is activated by phosphorylation-dependent 14-3-3 binding. Since the involvement of 14-3-3 proteins in sugar sensing-regulated processes has recently emerged, here we address the question as to whether sugar sensing plays a role in the regulation of H(+)-ATPase. The data reported here show that sugar depletion inhibits the association of 14-3-3 proteins with H(+)-ATPase by hampering phosphorylation of the 14-3-3 binding site of the enzyme. By using non-metabolizable disaccharides, we show that H(+)-ATPase regulation by 14-3-3 proteins can involve a specific sugar perception and transduction mechanism.  相似文献   

13.
The Nicotiana plumbaginifolia plasma membrane H(+)-ATPase isoform PMA2, equipped with a His(6) tag, was expressed in Saccharomyces cerevisiae and purified. Unexpectedly, a fraction of the purified tagged PMA2 associated with the two yeast 14-3-3 regulatory proteins, BMH1 and BMH2. This complex was formed in vivo without treatment with fusicoccin, a fungal toxin known to stabilize the equivalent complex in plants. When gel filtration chromatography was used to separate the free ATPase from the 14-3-3.H(+)-ATPase complex, the complexed ATPase was twice as active as the free form. Trypsin treatment of the complex released a smaller complex, composed of a 14-3-3 dimer and a fragment from the PMA2 C-terminal region. The latter was identified by Edman degradation and mass spectrometry as the PMA2 C-terminal 57 residues, whose penultimate residue (Thr-955) was phosphorylated. In vitro dephosphorylation of this C-terminal fragment prevented binding of 14-3-3 proteins, even in the presence of fusicoccin. Mutation of Thr-955 to alanine, aspartate, or a stop codon prevented PMA2 from complementing the yeast H(+)-ATPase. These mutations were also introduced in an activated PMA2 mutant (Gln-14 --> Asp) characterized by a higher H(+) pumping activity. Each mutation directly modifying Thr-955 prevented 14-3-3 binding, decreased ATPase specific activity, and reduced yeast growth. We conclude that the phosphorylation of Thr-955 is required for 14-3-3 binding and that formation of the complex activates the enzyme.  相似文献   

14.
14-3-3 proteins find new partners in plant cell signalling   总被引:1,自引:0,他引:1  
  相似文献   

15.
The vacuolar H(+)-ATPase (V-ATPase) is a key enzyme that controls the electrochemical proton potential across endomembranes. Although evidence suggests that V-ATPase is important for photo-morphogenesis, little is known about short-term regulation of V-ATPase upon initiation of the photo-morphogenetic programme by exposure of dark-grown plants to light. In this study, etiolated coleoptiles were given a short blue light treatment and V-ATPase characteristics were determined. The effectiveness of the light treatment was assessed by means of fusicoccin binding to the plasma membrane; this increased 5-fold. The short light treatment also induced a 2-fold to 3-fold increase in the hydrolytic activity of V-ATPase. Members of the 14-3-3 protein family are involved in both blue light perception and the subsequent activation of the P-type ATPase. We provide evidence that 14-3-3 proteins specifically interact with the catalytic A-subunit of the V-ATPase. First, the isolated V1-part of the V-ATPase co-purifies with 14-3-3 on a gel filtration column. Secondly, in an overlay experiment, 14-3-3 interacts with a 68 kDa band that was identified as the V1 A-subunit by mass spectrometry. Thirdly, in 14-3-3 affinity chromatography, both A- and B-subunits of the catalytic moiety of the V-ATPase were identified by matrix-assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI TOF/TOF MS) as 14-3-3-interacting proteins. It was shown that the A-subunit can be phosphorylated in vitro by a tonoplast-bound kinase, whose properties are affected by blue light. Taken together, the data show that besides the P- and F-type H(+)-ATPases, the V-type H(+)-ATPase also interacts with 14-3-3 proteins.  相似文献   

16.
The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase.  相似文献   

17.
In this study, we report on mutational studies performed to investigate the mechanism of binding of 14-3-3 proteins to the plasma membrane H(+)-ATPase of plant cells. In fact, although the molecular basis of the interaction between 14-3-3 and the known mode-1 and mode-2 consensus sequences are well characterized, no information is available regarding the association with the H(+)-ATPase, which contains the novel binding site YTV totally unrelated to the 14-3-3 canonical motifs. To this purpose, different mutants of the maize 14-3-3 GF14-6 isoform were produced and used in interaction studies with the plasma membrane H(+)-ATPase and with a peptide reproducing the 14-3-3 binding site of the enzyme. The ability of 14-3-3 mutants to stimulate H(+)-ATPase activity was also tested. To investigate the mechanism of fusicoccin-dependent interaction, binding experiments between 14-3-3 proteins and mutants of the extreme portion of the H(+)-ATPase C terminus were also carried out. The results demonstrate that mutations of Lys(56) and Val(185) within the amphipathic groove disrupt the ability of GF14-6 to interact with H(+)-ATPase and to stimulate its activity. Moreover, substitution of Asp(938) and Asp(940) in the MHA2 H(+)-ATPase C terminus greatly decreased association with GF14-6, thereby demonstrating a crucial role of negatively charged residues in the fusicoccin-dependent interaction.  相似文献   

18.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.  相似文献   

19.
20.
2,4-dichlorophenoxyacetic acid applied to excised leaves of Mimosa pudica L. inhibited in a dose-dependent manner the shock-induced pulvinar movement. This inhibition was negatively correlated with the amount of [(14)C] 2,4-dichlorophenoxyacetic acid present in the vicinity of the motor cells. Although 2,4-dichlorophenoxyacetic acid is a weak acid, its greatest physiological efficiency was obtained with pH values close to neutrality. This observation opens the question of its mode of action which may be through external signaling or following internal transport by a specific anionic form transporter. The effect was related to molecular structure since 2,4-dichlorophenoxyacetic acid>3,4-dichlorophenoxyacetic acid>2,3-dichlorophenoxyacetic acid. An essential target of 2,4-dichlorophenoxyacetic acid action lies at the plasmalemma as indicated by the induced hyperpolarization of the cell membrane. Compared to indole-3-acetic acid and fusicoccin, it induced a complex effect on H(+) fluxes. Applied to plasma membrane vesicles purified from motor organs, 2,4-dichlorophenoxyacetic acid enhanced proton pumping, but, unlike fusicoccin, it did not increase the H(+)-ATPase catalytic activity in our experimental conditions. Taken together, the data suggest that 2,4-dichlorophenoxyacetic acid acts on cell turgor variation and the concomittant ion migration, in particular K(+), by a mechanism involving specific steps compared to indole-3-acetic acid and fusicoccin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号