首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(8):767-775
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 marks. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP, and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that, at least these four KMTs, require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.  相似文献   

2.
We propose a model for heterochromatin assembly that links DNA methylation with histone methylation and DNA replication. The hypomethylated Arabidopsis mutants ddm1 and met1 were used to investigate the relationship between DNA methylation and chromatin organization. Both mutants show a reduction of heterochromatin due to dispersion of pericentromeric low-copy sequences away from heterochromatic chromocenters. DDM1 and MET1 control heterochromatin assembly at chromocenters by their influence on DNA maintenance (CpG) methylation and subsequent methylation of histone H3 lysine 9. In addition, DDM1 is required for deacetylation of histone H4 lysine 16. Analysis of F(1) hybrids between wild-type and hypomethylated mutants revealed that DNA methylation is epigenetically inherited and represents the genomic imprint that is required to maintain pericentromeric heterochromatin.  相似文献   

3.
4.
We have previously reported that carcinogenic nickel compounds decreased global histone H4 acetylation and silenced the gpt transgene in G12 Chinese hamster cells. However, the nature of this silencing is still not clear. Here, we report that nickel ion exposure increases global H3K9 mono- and dimethylation, both of which are critical marks for DNA methylation and long-term gene silencing. In contrast to the up-regulation of global H3K9 dimethylation, nickel ions decreased the expression and activity of histone H3K9 specific methyltransferase G9a. Further investigation demonstrated that nickel ions interfered with the removal of histone methylation in vivo and directly decreased the activity of a Fe(II)-2-oxoglutarate-dependent histone H3K9 demethylase in nuclear extract in vitro. These results are the first to show a histone H3K9 demethylase activity dependent on both iron and 2-oxoglutarate. Exposure to nickel ions also increased H3K9 dimethylation at the gpt locus in G12 cells and repressed the expression of the gpt transgene. An extended nickel ion exposure led to increased frequency of the gpt transgene silencing, which was readily reversed by treatment with DNA-demethylating agent 5-aza-2'-deoxycytidine. Collectively, our data strongly indicate that nickel ions induce transgene silencing by increasing histone H3K9 dimethylation, and this effect is mediated by the inhibition of H3K9 demethylation.  相似文献   

5.
6.
Chondroblastoma is a cartilaginous tumor that typically arises under 25 y of age (80%). Recent studies have identified a somatic and heterozygous mutation at the H3F3B gene in over 90% chondroblastoma cases, leading to a lysine 36 to methionine replacement (H3.3K36M). In human cells, H3F3B gene is one of 2 genes that encode identical H3.3 proteins. It is not known how H3.3K36M mutant proteins promote tumorigenesis. We and others have shown that, the levels of H3K36 di- and tri-methylation (H3K36me2/me3) are reduced dramatically in chondroblastomas and chondrocytes bearing the H3.3K36M mutation. Mechanistically, H3.3K36M mutant proteins inhibit enzymatic activity of some, but not all H3K36 methyltransferases. Chondrocytes harboring the same H3F3B mutation exhibited the cancer cell associated phenotypes. Here, we discuss the potential effects of H3.3K36M mutation on epigenomes including H3K36 and H3K27 methylation and cellular phenotypes. We suggest that H3.3K36M mutant proteins alter epigenomes of specific progenitor cells, which in turn lead to cellular transformation and tumorigenesis.  相似文献   

7.
8.
9.
Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners.Key words: histone methylation, lysine methyltransferase, H3K4me3, H3K9me3, SETDB1, G9A, ING2  相似文献   

10.
11.
Mono-, di-, and trimethylation of specific histone residues adds an additional level of complexity to the range of histone modifications that may contribute to a histone code. However, it has not been clear whether different methylated states reside stably at different chromatin sites or whether they represent dynamic intermediates at the same chromatin sites. Here, we have used recently developed antibodies that are highly specific for mono-, di-, and trimethylated lysine 9 of histone H3 (MeK9H3) to examine the subnuclear localization and replication timing of chromatin containing these epigenetic marks in mammalian cells. Me1K9H3 was largely restricted to early replicating, small punctate domains in the nuclear interior. Me2K9H3 was the predominant MeK9 epitope at the nuclear and nucleolar periphery and colocalized with sites of DNA synthesis primarily in mid-S phase. Me3K9H3 decorated late-replicating pericentric heterochromatin in mouse cells and sites of DAPI-dense intranuclear heterochromatin in human and hamster cells that replicated throughout S phase. Disruption of the Suv39h1,2 or G9a methyltransferases in murine embryonic stem cells resulted in a redistribution of methyl epitopes, but did not alter the overall spatiotemporal replication program. These results demonstrate that mono-, di-, and trimethylated states of K9H3 largely occupy distinct chromosome domains.  相似文献   

12.
13.
The Prader-Willi syndrome (PWS)/Angelman syndrome (AS) region, on human chromosome 15q11-q13, exemplifies coordinate control of imprinted gene expression over a large chromosomal domain. Establishment of the paternal state of the region requires the PWS imprinting center (PWS-IC); establishment of the maternal state requires the AS-IC. Cytosine methylation of the PWS-IC, which occurs during oogenesis in mice, occurs only after fertilization in humans, so this modification cannot be the gametic imprint for the PWS/AS region in humans. Here, we demonstrate that the PWS-IC shows parent-specific complementary patterns of H3 lysine 9 (Lys9) and H3 lysine 4 (Lys4) methylation. H3 Lys9 is methylated on the maternal copy of the PWS-IC, and H3 Lys4 is methylated on the paternal copy. We suggest that H3 Lys9 methylation is a candidate maternal gametic imprint for this region, and we show how changes in chromatin packaging during the life cycle of mammals provide a means of erasing such an imprint in the male germline.  相似文献   

14.
15.
Heterochromatin,HP1 and methylation at lysine 9 of histone H3 in animals   总被引:22,自引:0,他引:22  
We show that methylated lysine 9 of histone H3 (Me9H3) is a marker of heterochromatin in divergent animal species. It localises to both constitutive and facultative heterochromatin and replicates late in S-phase of the cell cycle. Significantly, Me9H3 is enriched in the inactive mammalian X chromosome (Xi) in female cells, as well as in the XY body during meiosis in the male, and forms a G-band pattern along the arms of the autosomes. Me9H3 is a constituent of imprinted chromosomes that are repressed. The paternal and maternal pronuclei in one-cell mouse embryos show a striking non-equivalence in Me9H3: the paternal pronucleus contains no immunocytologically detectable Me9H3. The levels of Me9H3 on the parental chromosomes only become equivalent after the two-cell stage. Finally, we provide evidence that Me9H3 is neither necessary nor sufficient for localisation of heterochromatin protein 1 (HP1) to chromosomal DNA.  相似文献   

16.
The aim of this study was to identify in human cells common targets of histone H3 lysine 9 (H3-Lys9) methylation, a modification that is generally associated with gene silencing. After chromatin immunoprecipitation using an H3-Lys9 methylated antibody, we cloned the recovered DNA and sequenced 47 independent clones. Of these, 38 clones (81%) contained repetitive elements, either short interspersed transposable element (SINE or Alu elements), long terminal repeat (LTR), long interspersed transposable element (LINE), or satellite region (ALR/Alpha) DNA, and three additional clones were near Alu elements. Further characterization of these repetitive elements revealed that 32 clones (68%) were Alu repeats, corresponding to both old Alu (23 clones) and young Alu (9 clones) subfamilies. Association of H3-Lys9 methylation was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. In addition, we randomly selected 5 Alu repeats from the recovered clones and confirmed association with H3-Lys9 by PCR using primer sets flanking the Alu elements. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine rapidly decreased the level of H3-Lys9 methylation in the Alu elements, suggesting that H3-Lys9 methylation may be related to the suppression of Alu elements through DNA methylation. Thus H3-Lys9 methylation is enriched at human repetitive elements, particularly Alu elements, and may play a role in the suppression of recombination by these elements.  相似文献   

17.
Hypoacetylated histones are a hallmark of heterochromatin in organisms ranging from yeast to humans. Histone deacetylation is carried out by both NAD(+)-dependent and NAD(+)-independent enzymes. In the budding yeast Saccharomyces cerevisiae, deacetylation of histones in heterochromatic chromosomal domains requires Sir2, a phylogenetically conserved NAD(+)-dependent deacetylase. In the fission yeast Schizosaccharomyces pombe, NAD(+)-independent histone deacetylases are required for the formation of heterochromatin, but the role of Sir2-like deacetylases in this process has not been evaluated. Here, we show that spSir2, the S. pombe Sir2-like protein that is the most closely related to the S. cerevisiae Sir2, is an NAD(+)-dependent deacetylase that efficiently deacetylates histone H3 lysine 9 (K9) and histone H4 lysine 16 (K16) in vitro. In sir2 Delta cells, silencing at the donor mating-type loci, telomeres, and the inner centromeric repeats (imr) is abolished, while silencing at the outer centromeric repeats (otr) and rDNA is weakly reduced. Furthermore, Sir2 is required for hypoacetylation and methylation of H3-K9 and for the association of Swi6 with the above loci in vivo. Our findings suggest that the NAD(+)-dependent deacetylase Sir2 plays an important and conserved role in heterochromatin assembly in eukaryotes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号