首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of vasopressin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an acidic molecular weight 80,000 cellular protein (termed 80K). The effect was concentration- and time-dependent; enhancement in 80K phosphorylation could be detected as early as 30 sec after the addition of the hormone. Recently, a rapid increase in the phosphorylation of an 80K cellular protein following treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact Swiss 3T3 cells. Here we show that the 80K phosphoproteins generated in response to vasopressin and phorbol 12,13-dibutyrate (PBt2) were identical as judged by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) and peptide mapping following partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with PBt2 which leads to the disappearance of protein kinase C activity blocked the ability of vasopressin to stimulate the phosphorylation of 80K. The effect of vasopressin on 80K phosphorylation and mitogenesis was selectively blocked by the vasopressin antagonist (Pmp1-O-Me-Tyr2-Arg8) vasopressin suggesting that these responses are mediated by its specific receptor in these cells. The removal of vasopressin leads to dephosphorylation (within minutes) of the 80K phosphoprotein. We conclude that vasopressin rapidly stimulates protein kinase C activity in intact 3T3 cells.  相似文献   

2.
Addition of serum to quiescent cultures of Swiss 3T3 cells and mouse embryo fibroblasts causes a rapid increase in the phosphorylation of an 80 000 mol. wt. cellular protein (termed 80 K). The effect is dose- and time-dependent; enhancement in 80 K phosphorylation can be detected as early as 10-15 s after adding serum. In contrast, platelet-derived growth factor elicits the response after a lag of 1.5 min suggesting that this growth factor does not mediate the response to serum. Recently a rapid increase in the phosphorylation of an 80 K cellular protein following treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts. The 80 K phosphoproteins generated in response to serum and to phorbol dibutyrate (PBt2) co-migrated in one- and two-dimensional PAGE and produced identical phosphopeptide fragments when subjected to partial digestion with Staphyloccocus aureus V8 protease. These observations suggest that the same 80 K protein is generated in response to serum and PBt2. We conclude that activation of protein kinase C in intact cells is one of the earliest effects elicited by serum in quiescent fibroblasts.  相似文献   

3.
Guanine nucleotides and pertussis toxin were used to test for the involvement of a guanine nucleotide binding protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C activity in Swiss 3T3 cells. Addition of vasopressin in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid increase (8 +/- 1-fold after 1 min) in the phosphorylation of an Mr = 80,000 cellular protein (80K), a specific marker for protein kinase C activation. This phosphorylation was selectively blocked by the V1 receptor antagonist Pmp1-0-Me-Tyr2 [Arg8] vasopressin, indicating that the effect was mediated through the vasopressin V1 receptor. Down regulation of protein kinase C by prior prolonged pretreatment of intact cells with phorbol 12,13-dibutyrate (PBt2) blocked the ability of vasopressin to stimulate the phosphorylation of 80K in digitonin-permeabilized cells. Addition of a submaximal concentration of vasopressin together with the GTP analogue GTP-gamma-S caused a synergistic stimulation of 80K phosphorylation. The GDP analogue GDP-beta-S caused a 50% inhibition of the phosphorylation of 80K induced by a saturating concentration of vasopressin and shifted the vasopressin dose-response curve to the right. GDP-beta-S had no effect on the dose-response for the stimulation of 80K phosphorylation induced by PBt2. Prior incubation of intact quiescent cultures of Swiss 3T3 cells with pertussis toxin did not impair either vasopressin-induced increase in cytosolic [Ca2+] or activation of protein kinase C. These findings provide functional evidence for the involvement of a pertussis toxin-insesitive G protein in the vasopressin V1 receptor-mediated stimulation of protein kinase C in Swiss 3T3 cells.  相似文献   

4.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

5.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

6.
Addition of bombesin to quiescent cultures of Swiss 3T3 cells caused a rapid increase in the phosphorylation of an Mr 80,000 cellular protein (designated 80k). The effect was both concentration and time dependent; enhancement in 80k phosphorylation could be detected as early as 10 s after the addition of peptide. Recently, a rapid increase in the phosphorylation of an 80k cellular protein after treatment with phorbol esters or diacylglycerol has been shown to reflect the activation of protein kinase C in intact fibroblasts (Rozengurt, E., A. Rodriguez-Pena, and K. A. Smith, 1983, Proc. Natl. Acad. Sci. USA., 80:7244-7248; Rozengurt, E., A. Rodriguez-Pena, M. Coombs, and J. Sinnett-Smith, 1984, Proc. Natl. Acad. Sci. USA., 81:5748-5752). The 80k phosphoproteins generated in response to bombesin and to phorbol 12,13-dibutyrate were identical as judged by one- and two-dimensional PAGE and by peptide mapping after partial proteolysis with Staphylococcus aureus V8 protease. In addition, prolonged pretreatment of 3T3 cells with phorbol 12,13-dibutyrate, which leads to the disappearance of protein kinase C activity, blocked the ability of bombesin to stimulate 80k. Bombesin also caused a rapid (1 min) inhibition of 125I-labeled epidermal growth factor (125I-EGF) binding to Swiss 3T3 cells. The inhibition was both concentration and temperature dependent and resulted from a marked decrease in the affinity of the EGF receptor for its ligand. Peptides structurally related to bombesin, including gastrin-releasing peptide, also stimulated 80k phosphorylation and inhibited 125I-EGF binding; both effects were selectively blocked by a novel bombesin antagonist. These results strongly suggest that these responses are mediated by specific high-affinity receptors that recognize the peptides of the bombesin family in Swiss 3T3 cells. While an increase in cytosolic Ca2+ concentration does not mediate the bombesin inhibition of 125I-EGF binding, the activation of protein kinase C in intact Swiss 3T3 cells by peptides of the bombesin family may lead to rapid inhibition of the binding of 125I-EGF to its cellular receptor.  相似文献   

7.
To elucidate the transmembrane signalling processes initiated by fibroblast growth factor (FGF), we have studied the effect of recombinant basic FGF (bFGF) on various early events associated with mitogenesis in Swiss 3T3 fibroblasts. bFGF, at mitogenic concentrations, neither induced Ca2+ mobilization from intracellular stores nor increased the accumulation of inositol phosphates. In contrast, bFGF stimulated the phosphorylation of the Mr 80,000 (80K) cellular protein which is a major substrate of protein kinase C. This effect was potentiated by the diacylglycerol kinase inhibitor R59022. Two-dimensional polyacrylamide gel electrophoresis and phosphopeptide mapping showed that the 80K phosphoproteins generated in response to bFGF, bombesin, and phorbol 12,13-dibutyrate were indistinguishable. Down-regulation of protein kinase C prevented bFGF stimulation of 80K phosphorylation. Other protein kinase C-dependent early events such as transmodulation of the epidermal growth factor receptor, cytoplasmic alkalinization, inhibition of vasopressin induced increase in cytosolic [Ca2+], and enhancement of cAMP accumulation in response to forskolin were also induced by bFGF. Similar results were obtained when bFGF was added to quiescent cultures of tertiary mouse embryo fibroblasts. We conclude that bFGF stimulates protein kinase C through a signal transduction pathway distinct from inositol phospholipid turnover and Ca2+ mobilization.  相似文献   

8.
We have recently reported that a polypeptide mitogen, the embryonal carcinoma-derived growth factor (ECDGF), induces phosphorylation of the epidermal growth factor (EGF) receptor in intact C3H 10T 1/2 mouse fibroblasts with concomittant loss of high affinity EGF binding sites. This phenomenon appears to be mediated through an activation of protein kinase C. Several groups have described an acidic 80,000 dalton protein substrate of protein kinase C. In this paper, we demonstrate that the addition of ECDGF or the phorbol ester TPA to intact C3H 10T 1/2 cells results in the enhanced phosphorylation of this 80 kd protein in vivo. Furthermore, this response is demonstrable in vitro. Thus the addition of ECDGF, the phorbol ester TPA, protein kinase C or phosphoinositidase C to crude membranes prepared from C3H 10T 1/2 cells resulted in the enhanced phosphorylation of this protein. Data obtained by phosphopeptide mapping of the 80 kd protein show that the ECDGF-induced activation of protein kinase C in our membrane preparations is comparable with that obtained in vivo. The availability of an in vitro system in which this response is preserved should now allow a detailed biochemical analysis of the steps between binding of a mitogen to its receptor and the activation of protein kinase C.  相似文献   

9.
Protein phosphorylation and protein kinase C (PKC) levels were analyzed in intact cultures of spontaneously transformed, chemically transformed, and untransformed mouse pulmonary epithelial cell lines. It was found that although the transformed cell lines contained about 80% less protein kinase C, measured as total enzyme activity or binding of [3H]phorbol ester, phosphorylation events after phorbol ester treatment could still be easily detected. A commonly described Mr 80-kDa protein kinase C substrate (p80, 80 K, MARKS) was identified using 2D-PAGE, following phosphorylation in intact cells, and found to have reduced availability for phosphorylation in the transformed cell lines C4SE9, C1SA5 and NULB5 in comparison to the untransformed C4E10 and C1C10. Available levels of p80 were further analyzed in heat-denatured extracts from all cell lines using partially purified bovine brain PKC and correlated well with changes seen in intact cells. It was also noted that all transformed cell lines contained large amounts of a family of phosphoproteins of Mr 55-65 kDa, that could not be detected in the untransformed cell lines and whose phosphorylation state was increased by protein kinase C activation. This protein was found to be located in the nucleus. Hence, spontaneously and chemically transformed mouse pulmonary epithelial cells exhibit reduced levels of PKC, along with an altered pattern of PKC-mediated phosphorylation.  相似文献   

10.
Both bryostatin 1 and 4 beta-phorbol 12,13-dibutyrate (PBt2) activate Ca2+- and phospholipid-dependent protein kinase (protein kinase C) at the plasma membrane in HL-60 cells (Kraft, A. S., Baker, V. V., and May, W. S. (1987) Oncogene 1, 91-100). However, whereas PBt2 causes HL-60 cells to cease dividing and differentiate, bryostatin 1 antagonizes this effect and allows cells to continue proliferating. To test whether these divergent effects could be due to the differential activation of protein kinase C at the nuclear level, the phosphorylation of nuclear envelope polypeptides was evaluated in cells treated with either bryostatin 1 or PBt2. Bryostatin 1, either alone or in combination with PBt2, but not PBt2 alone, mediates rapid and specific phosphorylation of several nuclear envelope polypeptides. A major target for bryostatin-induced phosphorylation is the major nuclear envelope polypeptide lamin B (Mr = 67,000, pI 6.0). In vitro studies combining purified protein kinase C and HL-60 cell nuclear envelopes demonstrate that bryostatin activates protein kinase C to phosphorylate lamin B, whereas PBt2 does so only weakly, suggesting selective activation of this enzyme toward this substrate. Comparative phosphopeptide and phosphoamino acid analyses demonstrate that bryostatin induces phosphorylation of identical serine sites on lamin B both in whole cells and in vitro. Treatment of whole cells with bryostatin, but not PBt2, leads to specific translocation of activated protein kinase C to the nuclear envelope. Since phosphorylation of lamin B is known to be involved in nuclear lamina depolymerization at the time of mitosis, it is possible that bryostatin-activated protein kinase C activity is involved in this process. Finally, specific activation of protein kinase C at the nuclear membrane could explain, at least in part, the divergent effects of bryostatin 1 and PBt2 on HL-60 cell growth.  相似文献   

11.
Exposure of serum-deprived 3T3-L1 fibroblasts to phorbol 12-myristate 13-acetate (PMA), synthetic diacylglycerols, platelet-derived growth factor (PDGF), or pituitary fibroblast growth factor (FGF) resulted in stimulated phosphorylation of an acidic, multicomponent, soluble protein of Mr 80,000. Phosphorylation of this protein was promoted to a lesser extent by epidermal growth factor; however, neither insulin nor dibutyryl cAMP was effective. Phosphoamino acid analysis and peptide mapping of the Mr 80,000 32P-protein after exposure of fibroblasts to PDGF revealed identical patterns to those obtained with PMA or diacylglycerols. In contrast to the Mr 80,000 protein, proteins of Mr 22,000 (and pI 4.4) and Mr 31,000 were also phosphorylated in response to insulin as well as to PMA, diacylglycerols, epidermal growth factor, PDGF, and FGF in these cells. Similar findings were noted in fully differentiated 3T3-L1 adipocytes. Preincubation of the cells with high concentrations of active phorbol esters abolished specific [3H]phorbol 12,13-dibutyrate binding, protein kinase C activity, and immunoreactivity and also prevented stimulated phosphorylation of the Mr 80,000 protein by PMA, diacylglycerols, PDGF, or FGF, supporting the contention that this effect was mediated through protein kinase C. The stimulated phosphorylation of the Mr 22,000 and 31,000 proteins in response to PMA was also abolished by such pretreatment. In contrast, the ability of insulin, PDGF, and FGF to promote phosphorylation of the Mr 22,000 and 31,000 proteins was unaffected in the protein kinase C-deficient cells. We conclude that PDGF and FGF may exert some of their effects on these cells through at least two distinct pathways of protein phosphorylation, phorbol ester-like (P) activation of protein kinase C, and an insulin-like (I) pathway exemplified by phosphorylation of the Mr 22,000 and 31,000 proteins.  相似文献   

12.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

13.
Embryonic rat neurons cultured in defined medium, essentially in the absence of glia, were highly enriched in phorbol ester receptors. The neurons displayed a single class of phorbol 12,13-dibutyrate binding sites with a maximum binding capacity, after 10 d in culture, of 18.6 pmol/mg protein and an apparent dissociation constant of 7.1 nM. Phorbol ester binding sites were associated with protein kinase C, which represented a major protein kinase activity in primary neuronal cultures. Ca2+-phosphatidylserine-sensitive phosphorylation of endogenous substrates was more marked than that observed in the presence of cyclic AMP or Ca2+ and calmodulin. Phorbol ester receptors and protein kinase C levels were critically dependent on the culture age. Thus, about a 20-fold increase in binding sites occurred during the first week in culture and was accompanied by a corresponding increase in Ca2+-phosphatidylserine-sensitive protein phosphorylation in soluble neuronal extracts. These changes largely paralleled a similar rise in phorbol ester binding during fetal development in vivo. The apparent induction of phorbol ester receptors was specific relative to other cellular proteins and could be inhibited by cycloheximide or Actinomycin D. Phosphorylation of endogenous substrates in intact cultured neurons paralleled the age-dependent increase in protein kinase C. Furthermore, 32P incorporation into several major phosphoproteins was markedly augmented by treating the neuronal cultures with phorbol esters. Such phosphorylation events may provide a clue to the significance of protein kinase C in developing neurons.  相似文献   

14.
Subconfluent cultures of NIH-3T3 fibroblasts transformed by the Ha-ras, Ki-v-ras, v-src, and v-fms oncogene proteins all possess elevated steady-state levels of diacylglycerol, the endogenous activator of protein kinase C, as compared to the nontransformed parental lines. These oncogene-transformed fibroblasts also exhibit a significantly decreased level of cellular protein kinase C activity as measured by four different criteria: phorbol ester-stimulated phosphorylation of an endogenous 80-kilodalton (80 kDa) substrate; phorbol ester-stimulated changes in 86Rb uptake; enzymatic assay; and [3H]phorbol ester binding. In all cases, the transformed cells demonstrated an attenuated response to phorbol ester addition and a lower phorbol ester binding capacity as compared to the parental lines. Western analysis of the endogenous 80-kDa substrate of protein kinase C revealed a significantly lower level of this protein in the transformed cells than in the untransformed controls, and this decrease could be mimicked in parental cells by long-term incubation with phorbol esters, suggesting that the level of the 80-kDa protein is regulated by the state of activation of protein kinase C. These effects do not appear to be nonspecific responses to autocrine secretions by the transformed cells. They may represent an unsuccessful attempt by the transformed cells to negatively modulate the constitutive proliferative signals generated by the oncogene products.  相似文献   

15.
The synthetic diacylglycerol 1-oleoyl-2-acetyl glycerol (OAG) and phorbol esters activate protein kinase C in intact cells. We report here that OAG inhibits the binding of 125I-labelled epidermal growth factor (125I-EGF) to Swiss 3T3 cells. The inhibition was detected as early as 1 min after treatment at 37 degrees C and persisted for at least 120 min. The effect of OAG was reversed upon removal of this diacylglycerol. Detailed Scatchard analysis of 125I-EGF binding to Swiss 3T3 cells at 4 degrees C after a 1 h incubation with a saturating dose of OAG at 37 degrees C, demonstrates that this OAG pretreatment does not change the apparent number of EGF receptors but causes a marked decrease in their apparent affinity for the ligand. Prolonged treatment (40 h) of the cells with phorbol dibutyrate (PBt2) which causes a marked decrease in the number of phorbol ester binding sites and in the activity of protein kinase C, prevented the inhibition of 125I-EGF binding by both PBt2 and OAG. The results support the possibility that protein kinase C plays a role in the transmodulation of the EGF receptor in intact cells.  相似文献   

16.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

17.
The results presented here demonstrate that bradykinin, acting through a B2 subtype receptor, induces a unique pattern of early signals in quiescent Swiss 3T3 cells. Bradykinin caused a rapid mobilization of calcium from internal stores, as judged by measurements of intracellular Ca2+ concentration in fura-2-loaded cells and by 45Ca2+ efflux from radiolabeled cells. Analysis of phosphoproteins from 32P-labeled Swiss 3T3 cells by one- and two-dimensional gel electrophoresis revealed that bradykinin stimulated transient phosphorylation of an acidic cellular protein migrating with an apparent Mr = 80,000 (termed 80K), identified as a major and specific substrate of protein kinase C. Down-regulation of protein kinase C by pretreatment with phorbol 12,13-dibutyrate (PDBu) completely abolished the increase in 80K phosphorylation. In contrast to the sustained effect induced by bombesin, vasopressin, or PDBu, the stimulation of 80K phosphorylation by bradykinin reached a maximum after 1 min of incubation, and then it rapidly decreased to almost basal levels. Furthermore, bradykinin did not induce protein kinase C-mediated events such as inhibition of 125I-epidermal growth factor binding or enhancement of cAMP accumulation. Bombesin and vasopressin elicited both responses in parallel cultures. Bradykinin induced rapid accumulation of total inositol phosphates in cells labeled with myo-[3H]inositol. In contrast to bombesin and vasopressin which stimulated a linear increase in inositol phosphate accumulation over a 10-min period, the effect of bradykinin reached a plateau after 2.5 min of incubation with no further increase up to 10 min. The results demonstrate that the early signaling events triggered by bradykinin can be distinguished from those elicited by bombesin and vasopressin in Swiss 3T3 cells.  相似文献   

18.
1. The effect of endogenous PMA-stimulated phosphorylation of the protein in the molecular weight range of 130 kDa in rat cerebellum synaptosomal membranes was examined. 2. The 50% inhibition of the phosphorylation of 130 kDa protein by 5 microM polymyxin B was observed after 6 min of preincubation. 3. The sensitivity of 130 kDa protein for phosphorylation in the presence of exogenous protein kinase C suggests, that this protein could serve as a physiological substrate of protein kinase C. 4. Partial characterization of 130 kDa protein was performed. Upon incubation with [gamma-32P]ATP the 130 kDa protein formed Ca(2+)-dependent, hydroxylamine-sensitive phosphointermediate, which was inhibited by 50 microM vanadate, but not 0.5 mM vanadyl. 5. One-dimensional peptide mapping by proteolysis of 130 kDa protein with V8 protease was obtained.  相似文献   

19.
The tumor-promoting phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, causes a rapid, partial redistribution of 1,2-sn-diacylglycerol kinase from the cytosol to the particulate fraction of quiescent, starved Swiss 3T3 fibroblasts. We utilized exogenous dioleoylglycerol as substrate for the kinase. The inactive alpha form of the phorbol ester does not cause any change in diacylglycerol kinase localization, and depletion of protein kinase C (Ca2+/phospholipid-dependent enzyme) by chronic administration of phorbol ester blocks the redistribution. Phorbol ester has no direct effect on Swiss 3T3 membrane-bound diacylglycerol kinase nor does it directly effect cytosolic diacylglycerol kinase. When phorbol ester is added to Swiss 3T3 membranes in the presence of ATP, magnesium, and calcium, there is no activation of membrane-bound kinase, indicating that phorbol ester does not activate membrane-bound kinase through phosphorylation by protein kinase C. Reconstitution studies show that the soluble rat brain diacylglycerol kinase binds to diacylglycerol-enriched membranes, produced by treatment of red cell ghosts with phospholipase C or calcium, suggesting that cytosolic diacylglycerol kinase may be capable of translocation to the membrane in response to elevated substrate concentration in the intact cell. Stimulation of the cells with phorbol ester increases the total mass of diacylglycerol. In protein kinase C-depleted cells, addition of a cell-permeable synthetic diacylglycerol, dioctanoylglycerol, results in a partial redistribution of cytosolic diacylglycerol kinase to the membrane, by 5 min, also suggesting that the translocation of diacylglycerol kinase activity is regulated primarily by substrate concentration.  相似文献   

20.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号