首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristics of a virescent cotton mutant   总被引:5,自引:4,他引:1       下载免费PDF全文
Benedict CR  Kohel RJ 《Plant physiology》1968,43(10):1611-1616
The virescent cotton (Gossypium hirsutum) mutant described here differs from normal cultivated cotton by a single mutation in the nucleus. The mutant exhibits nuclear control of chlorophyll and carotenoid development. Young leaves are distinctly yellow and become green with age. There is no unusual photometabolism of 14CO2 or 14C-acetate in this mutant. It is probable that the nuclear virescent mutation is in a locus concerned with making structural units. The yellow leaves do show a high photosynthetic capacity on a chlorophyll basis. At saturating light intensity the rate of CO2 fixation is 8 fold higher than the green control leaves. Thus, impaired pigment synthesis which could be lethal is offset by a high photosynthetic capacity in the virescent leaves.  相似文献   

2.
Characterization of a virescent chloroplast mutant of tobacco   总被引:2,自引:1,他引:1       下载免费PDF全文
Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described.  相似文献   

3.
High photosynthetic rate of a chlorophyll mutant of cotton   总被引:1,自引:3,他引:1       下载免费PDF全文
In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m2 (400-700 nm) from a tungsten lamp were 36.8 mg CO2 fixed/dm2·hr (virescent) and 39.5 mg CO2 fixed/dm2·hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO2 fixed/mg chl·hr, respectively. (b) The photosynthetic rates at 13 w/m2 (400-700 nm) from a tungsten source were 7.1 mg CO2 fixed/dm2·hr (virescent) and 7.4 mg CO2 fixed/dm2·hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO2 fixed/mg chl·hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO2 compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.  相似文献   

4.
The purpose of this research was to determine the magnitude of photorespiration in field-grown cotton (Gossypium hirsutum L.) as a function of environmental and plant-related factors. Photorespiration rates were estimated as the difference between measured gross and net photosynthetic rates.

A linear increase in photorespiration was observed as air temperature increased from 22 to 40°C at saturating photon flux density. At 22°C, photorespiration was less than 15 per cent of net photosynthesis and very comparable to the dark respiration rate. At 40°C, photorespiration represented about 50 per cent of net photosynthesis. Gross photosynthesis had a temperature optimum of 32 to 34°C. Water stress, as indicated by ΨL, did not alter the ratio of gross photosynthesis to net photosynthesis when the confounding effects of leaf temperature differences were accounted for in the data analyses. A reduction in both gross and net photosynthesis was apparent as ΨL declined from −2.0 megapascals indicating direct effects of water stress on the photosynthetic process. Photorespiration expressed as a proportion of net photosynthesis increased as water stress intensified.

Cotton cultivars possessing a fruit load had significantly higher gross and net photosynthetic rates and lower photorespiration rates than did photoperiod-sensitive cotton strains without a fruit load. Within the fruiting types, which were genetically very similar, only minor differences were observed in the photorespiration:net photosynthesis ratios. However, in the photoperiod-sensitive strains, considerable genetic variability existed when photorespiration was expressed as a proportion of net photosynthesis. These results suggest that the kinetics of ribulose-1,5-bisphosphate carboxylase:oxygenase may be different and, thus, the possibility of genetically reducing photorespiration exists.

  相似文献   

5.
Stroma lamellae and grana stacks prepared by French press rupture of spinach (Spinacia oleracea) chloroplasts contain similar amounts of β-carotene on a protein basis. The grana fraction has considerably more xanthophylls than does the stroma fraction. Total carotenoid to chlorophyll ratios are similar for both fractions.  相似文献   

6.
Alan Stemler 《BBA》1977,460(3):511-522
Radioactive labelling techniques show that isolated broken chloroplasts can take up HCO3 in the dark. There are two pools of binding sites for this ion on, or within, the thylakoid membranes. A smaller, high affinity pool exists at a concentration of one HCO3 bound per 380–400 chlorophyll molecules. Removal of HCO3 bound in this pool requires special conditions and results in greater than 90% inhibition of oxygen evolution. The inhibition is fully reversed when HCO3 is added back. HCO3 bound in the small pool does not necessarily exchange with free HCO3 in the dark or in light. Evidence presented suggests that this site is very near the site of action of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea. A second, much larger, pool of HCO3 binding sites also exists in a concentration approaching that of the bulk chlorophyll. These sites have a much lower affinity for HCO3, and their function has not yet been determined.  相似文献   

7.
8.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

9.
Construction of a yeast mutant lacking the mitochondrial nuclease.   总被引:15,自引:4,他引:11       下载免费PDF全文
The nuclear gene from Saccharomyces cerevisiae that encodes the major mitochondrial nuclease was cloned. Gene sequences were identified from a lambda gt11 library by antibodies specific to the mitochondrial nuclease. DNA from the phage recombinant was used to isolate the entire nuclease gene from a plasmid library. Yeast strains containing the nuclease gene on a multicopy plasmid vector overproduced mitochondrial nuclease 20-40 times relative to a wild-type strain. Strains containing a null allele of the nuclease gene lacked all traces of mitochondrial nuclease. Both cell types, however, were phenotypically wild-type indicating that the nuclease is not an essential enzyme for mitochondrial function. The locus encoding the mitochondrial nuclease is termed NUC1.  相似文献   

10.
Atypical, highly organized, chloroplast structures, which occurred as tubules or spirals and appeared to be composed of a double membrane, were found in a mutant of Chlamydomonas reinhardi. These structures were light-induced, but their appearance was not directly related to the presence of chlorophyll.  相似文献   

11.
Incomplete development of chloroplast lamellae occurred when etiolated pea plants were greened under cycles of 2 min light, 118 min dark. Although the plastids had full photochemical activities, they were nearly agranal. They were also characterized by a high quantum requirement for whole chain electron transport in low light; this is thought to be the result of unequal light absorption by incompletely developed light-harvesting assemblies of photosystem I and II and a lack of regulation of excitation energy distribution between the two photosystems. Continuous illumination induced the final stages of membrane differentiation. These stages were primarily characterized by the appearance of grana stacking and an increase in photosynthetic unit size. A biphasic decrease in quantum requirement for whole chain electron transport correlated directly with the appearance of grana during the final steps of membrane assembly. Structural organization of the membrane may be related to the light-harvesting efficiency of the membrane.  相似文献   

12.
13.
Characterization of a bacteriophage T4 mutant lacking DNA-dependent ATPase.   总被引:5,自引:1,他引:4  
A DNA-dependent ATPase has previously been purified from bacteriophage T4-infected Escherichia coli. A mutant phage strain lacking this enzyme has been isolated and characterized. Although the mutant strain produced no detectable DNA-dependent ATPase, growth properties were not affected. Burst sizes were similar for the mutant phage and T4D in polA1, recB, recC, uvrA, uvrB, uvrC, and various DNA-negative E. coli. UV sensitivity and genetic recombination were normal in a variety of E. coli hosts. Mapping data indicate that the genetic locus controlling the mutant occurs near gene 56. The nonessential nature of this gene is discussed.  相似文献   

14.
The lipid composition of a barley mutant lacking chlorophyll b.   总被引:1,自引:0,他引:1       下载免费PDF全文
The acyl-lipid composition of a barley mutant that contained no detectable chlorophyll b was studied. This mutant contained chloroplasts that were much less organized than chloroplasts of normal barley. The mutant contained all the normal acyl lipids, with small increases in the relative concentration of phosphatidylglycerol and diacylsulphoquinoglycerides was unchanged, but most other lipids of the mutant barley contained lower amounts of alpha-linolenic acid compared with normal. There was no difference in the transhexadec-3-enoic acid content of phosphatidylglycerol, which was evidence against this lipid being involved in grana stacking.  相似文献   

15.
16.
17.
18.
Summary Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analysed and compared by two-dimensional gel electrophoresis.Mixothrophycally grown yellow-27 mutant differs from wild-type cells in lowered chlorophyll content and grana fromation of the chloroplast.Analytical ultracentrifuge analyses of cell extracts show a reduced amount of free 70S ribosomes and increased level of 50S subunits in the mutant cells. Similar results were obtained by electronmicroscopical method.Two-dimensional gel electrophoresis shows alterations in protein composition of 70S ribosomes of the mutant. Two proteins of 70S ribosomes have been altered. One of them with high molecular weight is practically absent while there is an additional, intensively stained spot in the mutant.Since the mutation is inherited in a non-Mendelian manner it is possible that the protein alterations in 70S ribosome are localized in the chloroplast DNA.  相似文献   

19.
20.
The lack of mitochondrial porin is not lethal in Saccharomyces cerevisiae, but it impairs some respiratory functions and, therefore, growth on nonfermentable carbon sources such as glycerol. However, after a lag phase porinless mutant cells adapt to growth on glycerol, accumulating large amounts of an 86-kilodalton (kDa) protein (M. Dihanich, K. Suda, and G. Schatz, EMBO J. 6:723-728, 1987) and of a 5-kilobase RNA. Immunogold labeling localized the 86 kDa-protein exclusively to the cytosol fraction, although most of it cosedimented with the microsome fraction in earlier cell fractionations. This discrepancy was resolved when the 86-kDa protein was identified as the major coat protein in viruslike particles (VLPs) which is encoded by a double-stranded RNA (L-A RNA). Elimination of VLPs in the original porinless strain by introduction of the mak10 or the mak3 mutation increased the respiratory defect and prolonged its lag phase on nonfermentable carbon sources. The fact that the simultaneous loss of VLPs and respiratory functions are the introduction of mak10 or mak3 occurred even in some porin-containing wild-type strains suggests that there is a link between VLP and mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号