首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reassociation of factor Va from its isolated subunits   总被引:4,自引:0,他引:4  
Factor Va is an essential cofactor for the activation of prothrombin catalyzed by factor Xa. The cofactor is a heterodimer composed of a light chain and a heavy chain that are associated noncovalently in the presence of divalent metal ions. The kinetics of the formation of factor Va from the isolated and separated subunits was examined by the time-dependent regain in cofactor activity using direct assays of prothrombin activation catalyzed by prothrombinase. The rate of reassociation at saturating concentrations of calcium ions was slow with a strong temperature dependence. The product of the association reaction was indistinguishable from native factor Va on the basis of activity. The second order rate constant for the process at 37 degrees C in the presence of 2 mM CaCl2 was 1.58 X 10(5) M-1.min-1. Manganese ion increased the rate of regain of activity without influencing the extent of the reaction. The previous identification of a single reactive sulfhydryl in each subunit of factor Va permitted the modification of the separated subunits with sulfhydryl-directed fluorophores. Subunit reassociation was directly measured by fluorescence energy transfer using light chain modified with 6-acryloyl-2-dimethylaminonaphthalene (fluorescence donor) and heavy chain modified with fluorescein 5-maleimide (fluorescence acceptor). Fluorescence measurements indicate that the heavy and light chains associate tightly (Kd = 5.9 x 10(-9) M) and reversibly with a stoichiometry of 1:1. The dissociation of the subunits from the cofactor is first order with a rate constant of 1.03 X 10(-3) min-1. These interpretations were confirmed by physical measurements of subunit reassociation by sedimentation velocity studies.  相似文献   

2.
The inactivation of Factor Va by plasmin was studied in the presence and absence of phospholipid vesicles and calcium ions. The cleavage patterns of bovine Factor Va and its isolated subunits were analyzed using polyacrylamide gel electrophoresis, and the progress of inactivation was monitored by clotting assays and measurements of prothrombin activation using 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5-penta nediyl)amide. In addition, the ability of prothrombin and Factor Xa to protect Factor Va from inactivation by human plasmin was examined. The data presented indicate that the cofactor Factor Va is inactivated rapidly upon its interaction with human plasmin. The rate of inactivation is significantly enhanced in the presence of phospholipid vesicles, suggesting that the inactivation process is a membrane-bound phenomenon. The isolated D component (heavy chain of factor Va) was found to be slowly degraded by human plasmin, giving rise to cleavage products different from those obtained with activated protein C and Factor Xa. However, the 48- and 30-kDa fragments obtained from human plasmin degradation of component E (light chain of Factor Va) appear to be similar to those obtained following the proteolysis of the same subunit by activated protein C and Factor Xa.  相似文献   

3.
The two-subunit structure of the factor Va molecule is essential to its function in the prothrombinase complex. In the presence of phospholipids, the cleavage of the light chain of bovine factor Va by activated protein C proceeded at the same rate as the cleavage of the heavy chain. The limited proteolysis of factor Va is accompanied by a parallel loss of factor Va activity. Evidence that loss of activity was solely the result of the cleavage of the heavy chain, was obtained from reconstitution experiments utilizing cleaved and intact chains. The pseudo first-order rate constant of factor Va inactivation by activated protein C was found to be dependent on the amount of phospholipid-bound activated protein C and not on the amount of phospholipid-bound factor Va. However, phospholipids enhance the rate of proteolysis of the phospholipid-binding subunit, i.e. the light chain, and not the cleavage of the heavy chain. Cleavage of the heavy chain and as a consequence the inactivation of factor Va by activated protein C is mediated by phospholipid-bound light chain. After cleavage of the light chain, the 'two-subunit' structure, as well as the phospholipid-binding properties of factor Va were found to be conserved.  相似文献   

4.
Inactivation of factor VIII by activated protein C and protein S   总被引:4,自引:0,他引:4  
Factor VIII was inactivated by activated protein C in the presence of calcium and phospholipids. Analysis of the activated protein C-catalyzed cleavage products of factor VIII indicated that inactivation resulted from the cleavage of the heavy chains. The heavy chains appeared to be converted into 93- and 53-kDa peptides. Inactivation of factor VIII that was only composed of the 93-kDa heavy chain and 83-kDa light chain indicated that the 93-kDa polypeptide could be degraded into a 68-kDa peptide that could be subsequently cleaved into 48- and 23-kDa polypeptides. Thus, activated protein C catalyzed a minimum of four cleavages in the heavy chain. Activated protein C did not appear to alter the factor VIII light chain. The addition of protein S accelerated the rate of inactivation and the rate of all of the cleavages. The effect of protein S could be observed on the cleavage of the heavy chains and on secondary cleavages of the smaller products, including the 93-, 68-, and 53-kDa polypeptides. The addition of factor IX to the factor VIII-activated protein C reaction mixture resulted in the inhibition of factor VIII inactivation. The effect of factor IX was dose dependent. Factor VIII was observed to compete with factor Va for activated protein C. The concentration dependence of factor VIII inhibition of factor Va inactivation suggested that factor VIII and factor Va were equivalent substrates for activated protein C.  相似文献   

5.
The binding of activated protein C to factors V and Va   总被引:8,自引:0,他引:8  
Activated protein C has been derivatized with the active site-directed fluorophore 2-(dimethylamino)-6-naphthalenesulfonylglutamylglycylarginyl chloromethyl ketone (2,6-DEGR-APC). Covalently modified activated protein C has been used to investigate the binding interactions of the protein to factors V and Va in the presence of phospholipid vesicles. The fluorescence polarization of the 6-dimethylaminonaphthalene-2-sulfonyl moiety increased saturably with increasing phospholipid concentrations in the presence or absence of factor V or Va. Differences in the limiting polarization values indicated distinguishable differences in the interactions between 2,6-DEGR-APC and phospholipid in the presence of factor V or Va. The dissociation constant calculated for the 2,6-DEGR-APC/phospholipid interaction (7.3 X 10(-8) M) was not significantly altered by factor V but was decreased to 7 X 10(-9) M in the presence of factor Va. The interaction between 2,6-DEGR-APC and factor V or Va was characterized by a 1:1 stoichiometry. The binding of 2,6-DEGR-APC to factor V or Va in the presence of phospholipid could be reduced in a competitive manner by diisopropylphosphofluoridate-treated activated protein C. An analysis of the displacement curves indicated that the binding of 2,6-DEGR-APC was indistinguishable from the binding of diisopropylphosphofluoridate-treated activated protein C. The interaction between 2,6-DEGR-APC and phospholipid-bound factor Va was further examined using the isolated subunits of factor Va. Fluorescence polarization changes observed with component E of Va (light chain) closely corresponded with the changes observed with factor Va, whereas isolated component D (heavy chain) had little influence on the binding of 2,6-DEGR-APC to phospholipid vesicles. The data presented are consistent with the interpretation that component E of factor Va contains a binding site for activated protein C.  相似文献   

6.
Human coagulation factor V is an integral component of the prothrombinase complex. Rapid activation of prothrombin is dependent on the interactions of this nonenzymatic cofactor with factor Xa and prothrombin in the presence of calcium ions and a phospholipid or platelet surface. Factor V is similar structurally and functionally to the homologous cofactor, factor VIII, which interacts with factor IXa to accelerate factor X activation in the presence of calcium and phospholipids. Both of these cofactors, when activated, possess homologous heavy and light chains. Binding to anionic phospholipids is mediated by the light chains of these two cofactors. In bovine factor Va, a phosphatidylserine-specific binding site has been localized to the amino-terminal A3 domain of the light chain. In human factor VIII, on the other hand, a region within the carboxyl-terminal C2 domain of the light chain has been shown to interact with anionic phospholipids. We have constructed a series of recombinant deletion mutants lacking domain-size fragments of the light chain of human factor V (rHFV). These mutants are expressed and secreted as single-chain proteins by COS cells. Thrombin and the factor V activator from Russell's viper venom process these deletion mutants as expected. The light chain deletion mutants possess essentially no procoagulant activity, nor are they activated by treatment with factor V activator from Russell's viper venom. Deletion of the second C-type domain results in essentially complete loss of phosphatidylserine-specific binding whereas the presence of the C2 domain alone (rHFV des-A3C1, which lacks the A3 and C1 domains of the light chain) results in significant phosphatidylserine-specific binding. The presence of the A3 domain alone (rHFV des-C1C2) does not mediate binding to immobilized phosphatidylserine. Increasing calcium ion concentrations result in decreased binding of recombinant human factor V and the mutant rHFV des-A3C1 to phosphatidylserine, similar to previous studies with purified plasma factor V and phospholipid vesicles. These results indicate that human factor V, similar to human factor VIII, possesses a phosphatidylserine-specific binding site within the C2 domain of the light chain.  相似文献   

7.
A monoclonal antibody which inhibits the factor Va:factor Xa interaction   总被引:4,自引:0,他引:4  
An immunoprecipitation technique has been used to determine the subunit specificity of two of the monoclonal antibodies to bovine Factor V(Va) developed by this laboratory. One of the antibodies is specific for the 74,000-dalton subunit (the E chain) of Factor Va, and the other antibody is specific for the 94,000-dalton subunit (the D chain). The binding of Factor Va to phospholipid was studied by light scattering, and the interaction of Factor Xa with phospholipid-bound Factor Va was examined using 5-dimethylaminonaphthalene-1-sulfonyl-glutamyl-glycyl-arginyl-Xa (Dns-EGR-Xa). Neither the antibody specific for the E chain nor the antibody specific for the D chain inhibit the binding of Factor Va to phospholipid vesicles. The antibody specific for the E chain blocks the increase in fluorescence polarization seen when Factor Va is added to a solution of Dns-EGR-Xa, phospholipid vesicles and calcium. This antibody also inhibits the association of Dns-EGR-Xa with phospholipid-bound Factor Va as determined by gel-exclusion high pressure liquid chromatography. The antibody specific for the D chain of Factor Va does not block the increase in polarization seen when Factor Va is added to a solution of Dns-EGR-Xa, phospholipid, and calcium. It was concluded that the antibody specific for the E chain of Factor Va binds at or near the Factor Xa-binding site on the E chain and that the Factor Va E chain plays a significant role in binding Factor Xa.  相似文献   

8.
Factor VIII is represented as a series of heterodimers composed of an 83(81) kDa light chain noncovalently bound to a variable size (93 to 210 kDa) heavy chain. Activated protein C inactivates factor VIII causing several cleavages of the factor VIII heavy chain(s). When factor VIII subunits were dissociated and component heavy and light chains isolated, the heavy chains were no longer a substrate for proteolysis by activated protein C. However, when factor VIII heavy chains were recombined with light chain, the reconstituted factor VIII activity was inactivated by activated protein C. The rate of factor VIII inactivation catalyzed by activated protein C was reduced by the presence of free light chain. The extent of this inhibition was dependent upon the concentration of light chain. Control experiments indicated that this protective effect of free light chain was not the result of inhibition of the activated protein C - lipid interaction. Fluorescence analysis demonstrated binding between the factor VIII light chain, chemically modified with eosin maleimide, and activated protein C, modified at its active site by dansyl-Glu-Gly-Arg chloromethyl ketone. Similar to proteolysis of factor VIII by activated protein C, this binding was dependent upon a lipid surface. Based upon the degree of fluorescence quenching, a spatial distance of 26 A was calculated separating the two fluorophores. These results demonstrate direct binding of activated protein C to the factor VIII light chain and suggest that this binding is an obligate step for activated protein C-catalyzed inactivation of factor VIII.  相似文献   

9.
W H Kane  A Ichinose  F S Hagen  E W Davie 《Biochemistry》1987,26(20):6508-6514
Human factor V is a high molecular weight plasma glycoprotein that participates as a cofactor in the conversion of prothrombin to thrombin by factor Xa. Prior to its participation in the coagulation cascade, factor V is converted to factor Va by thrombin generating a heavy chain and a light chain, and these two chains are held together by calcium ions. A connecting region originally located between the heavy and light chains is liberated during the activation reaction. In a previous study, a cDNA of 2970 nucleotides that codes for the carboxyl-terminal 938 amino acids of factor V was isolated and characterized from a Hep G2 cDNA library [Kane, W. H., & Davie, E. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6800-6804]. This cDNA has been used to obtain additional clones from Hep G2 and human liver cDNA libraries. Furthermore, a Hep G2 cDNA library prepared with an oligonucleotide from the 5' end of these cDNAs was screened to obtain overlapping cDNA clones that code for the amino-terminal region of the molecule. The composite sequence of these clones spans 6911 nucleotides and is consistent with the size of the factor V message present in Hep G2 cells (approximately 7 kilobases). The cDNA codes for a leader sequence of 28 amino acids and a mature protein of 2196 amino acids. The amino acid sequence predicted from the cDNA was in complete agreement with 139 amino acid residues that were identified by Edman degradation of cyanogen bromide peptides isolated from the heavy chain region and connecting region of plasma factor V.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Thrombin-activated factor Va exists as two isoforms, factor Va(1) and factor Va(2), which differ in the size of their light chains and their affinity for biological membranes. The heterogeneity of the light chain remained following incubation of factor Va with N-glycanase. However, we found that the factor V C2 domain, which contains a single potential glycosylation site at Asn-2181, was partially glycosylated when expressed in COS cells. To confirm the structural basis for factor Va(1) and factor Va(2), we mutated Asn-2181 to glutamine (N2181Q) and expressed this mutant using a B domain deletion construct (rHFV des B) in COS cells. Thrombin activation of N2181Q released a light chain with mobility identical to that of factor Va(2) on SDS-PAGE. The functional properties of purified N2181Q were similar to those of factor Va(2) in prothrombinase assays carried out in the presence of limiting concentrations of phosphatidylserine. The binding of human factor Va(1) and factor Va(2) to 75:25 POPC/POPS vesicles was also investigated in equilibrium binding assays using proteins containing a fluorescein-labeled heavy chain. The affinity of human factor Va(2) binding to POPC/POPS vesicles was approximately 3-fold higher than that of factor Va(1). These results indicate that partial glycosylation of factor V at asparagine-2181 is the structural basis of the light chain doublet and that the presence of this oligosaccharide reduces the affinity of factor Va for biological membranes.  相似文献   

11.
D Sinha  F S Seaman  P N Walsh 《Biochemistry》1987,26(13):3768-3775
Since optimal rates of factor IX activation by factor XIa require the presence of calcium ions and the heavy chain of the enzyme as well as the active-site-containing light chain, we have studied the effects of calcium ions and the heavy chain on the reaction kinetics. Whereas the amidolytic activities of factor XIa and of its active-site-containing light chain were almost indistinguishable, the two enzymes behaved quite differently when factor IX was the substrate. Factor XIa was 100-fold more potent in the presence of Ca2+ than in its absence. On the contrary, the presence or absence of Ca2+ made very little difference in the case of the isolated light chain of factor XIa. Moreover, the enzymatic activity of the light chain was almost identical with that of intact factor XIa when Ca2+ was absent. Using an optimal concentration of Ca2+, we studied the activation in the presence of various concentrations of two monoclonal antibodies, one (5F4) directed against the light chain of factor XIa and the other (3C1) against its heavy chain. Analysis of 1/V vs. 1/S plots showed that whereas inhibition by 5F4 was noncompetitive, 3C1 neutralized the enzyme in a classical competitive fashion. We conclude that in the calcium-dependent activation of factor IX by factor XIa the heavy chain of the enzyme is involved in the binding of the substrate and this is essential for optimal reaction rates.  相似文献   

12.
Thermal treatment of squid myosin subfragment-1 (S-1) in the presence of EDTA results in a rapid inactivation of ATPase, a marked turbidity increase, and a dissociation of light chains. These effects were suppressed by addition of calcium ion. Different light chain binding in EDTA-medium from that in Ca-medium was demonstrated by the tryptic digestion of native squid S-1; the two types of light chain are both resistant to trypsinolysis in Ca-medium, whereas they are readily degraded in EDTA-medium. S-1 heavy chain was converted into three fragments with sizes of 27, 47, and 22 kDa in both media. However, trypsinolysis of S-1 inactivated in Ca-medium generated no such heavy chain fragments that survived, while the two types of light chain survived. These light chains were isolated as a complex lacking any heavy chain fragments, and the complex formation was Ca-sensitive. It is concluded that regulatory and essential light chains are present on S-1 as a complex whose formation is mediated by calcium ion, and this binding might alter the S-1 conformation so as to confer resistance to thermal treatment.  相似文献   

13.
The binding of factor Va to phospholipid vesicles   总被引:5,自引:0,他引:5  
The analysis of free sulfhydryl groups in factor Va using dithiobis-(nitrobenzoic acid) (DTNB) indicated the presence of one accessible thiol in each of the two subunits of the cofactor. Intact factor Va contained one readily accessible sulfhydryl group under native conditions and approximately two such groups after denaturation. A comparison of the rate of modification of the accessible thiol in factor Va under native conditions to those observed with the isolated subunits indicated that the thiol present in component D of the cofactor was readily accessible to reaction with DTNB. Factor Va was reacted with the sulfhydryl-directed fluorophore N-(1-pyrene)maleimide, resulting in the concomitant loss of the accessible thiol with no detectable alteration in the activity of the cofactor. This fluorescent derivative of factor Va (Pyr-Va) was used to examine the binding of factor Va to phospholipid vesicles by fluorescence polarization. Fluorescence polarization of the pyrene moiety increased saturably when Pyr-Va was titrated with increasing concentrations of vesicles composed of phosphatidylcholine and phosphatidylserine (PS). Systematic analysis of the binding of Pyr-Va to PCPS (75% phosphatidylcholine, 25% PS) indicated that the binding interaction was characterized by a dissociation constant of 2.7 x 10(-9) M with 42 mol of PCPS bound per mol of Va at saturation. The data obtained by varying the PS content of the vesicles are consistent with the interpretation that the Va-combining site on the vesicle surface is composed of a discrete number of PS molecules. The binding of Pyr-Va to PCPS was independent of added calcium ion and could be reversed by the addition of unlabeled Va or isolated component E but not by component D. Analysis of the displacement curves indicated that native factor Va or isolated component E and Pyr-Va mutually excluded each other on the vesicle surface with identical affinities. Competition experiments conducted using component E digested by factor Xa or the isolated derivative peptides indicated that the cleavage of component E by factor Xa had no effect on the PCPS binding properties of this subunit. Further, the data obtained with the isolated peptides suggest that the lipid-binding domain of component E is present in the amino-terminal region of this subunit.  相似文献   

14.
The effect of calcium ions on conformational changes of F-actin initiated by decoration of thin filaments with phosphorylated and dephosphorylated heavy meromyosin from smooth muscles was studied by fluorescence polarization spectroscopy. It is shown that heavy meromyosin with phosphorylated regulatory light chains (pHMM) promotes structural changes of F-actin which are typical for the "strong" binding of actin to the myosin heads. Heavy meromyosin with dephosphorylated regulatory light chains (dpHMM) causes conformational changes of F-actin which are typical for the "weak" binding of actin to the myosin heads. The presence of calcium enhances the pHMM effect and attenuates the dpHMM effect. We propose that a Ca2+-dependent mechanism exists in smooth muscles which modulates the regulation of actin--myosin interaction occurring via phosphorylation of myosin regulatory light chains.  相似文献   

15.
Thrombin-activated factor Va and factor Va subunit binding to large-volume vesicles was investigated by a technique based on the separation by centrifugation of phospholipid-bound protein from the bulk solution. This technique allows the direct measurement of free-protein concentration. It is concluded that the phospholipid binding site on factor Va is located on a basic factor Va subunit with Mr 80 000 (factor Va-LC). The effects of phospholipid vesicle composition, calcium concentration, pH, and ionic strength on the equilibrium constants of factor Va- and factor Va-LC-phospholipid interaction were studied. Factor Va and factor Va-LC binding to phospholipid requires the presence of negatively charged phospholipids. It is further demonstrated that the following occur: (a) Calcium ions compete with factor Va and factor Va-LC for phospholipid-binding sites. (b) The dissociation constant of protein-phospholipid interaction increases with the ionic strength, whereas the maximum protein-binding capacity of the phospholipid vesicle was not affected by ionic strength. (c) The dissociation constant for factor Va-phospholipid interaction depends on pH when the vesicle consists of phosphatidic acid. It is concluded that factor Va-phospholipid interaction is primarily electrostatic in nature, where positively charged groups on the protein directly interact with the phosphate group of net negatively charged phospholipids. The results suggest that factor Va, like factor Xa and prothrombin, has the characteristics of an extrinsic membrane protein.  相似文献   

16.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

17.
The divalent metal ion binding sites of skeletal myosin were investigated by electron paramagnetic resonance (EPR) spectroscopy using the paramagnetic (Mn(II) ion as a probe. Myosin possesses two high affinity sites (K less than 1 muM) for Mn(II), which are located on the 5,5'-dithiobis(2-nitrobenzoate) (DTNB) light chains. Mn(II) bound to the isolated DTNB light chain gives rise to an EPR spectrum similar to that of Mn(II) bound to myosin and this indicates that the metal binding site comprises ligands from the DTNB light chain alone. Myosin preparations in which the DTNB light chain content is reduced by treatment with 5,5'-dithiobis(2-nitrobenzoate) show a corresponding reduction in the stoichiometry of Mn(II) binding, but the stoichiometry is recovered on reassociation of the DTNB light chain. Chymotryptic digestion of myosin filaments in the presence of ethylenediaminetetraacetic acid yields subfragment 1, but digestion in the presence of divalent metal ions produces heavy meromyosin. Myosin with a depleted DTNB light chain content gives rise to subfragment 1 on proteolysis, even in the presence of divalent metal ions. It is proposed that saturation of the DTNB light chain site with divalent ions protects this subunit against proteolysis, which, in turn, inhibits the cleavage of the subfragment 1-subfragment 2 link. Either the DTNB light chain is located near the region of the link and sterically blocks chymotryptic attack, or it is bound to the subfragment 1 moiety and affects the conformation of the link region. When the product heavy meromyosin was examined by sodium dodecyl sulfate gel electrophoresis, an apparent anomaly arose in that there was no trace of the 19 000-dalton band corresponding to the DTNB light chain. This was resolved by following the time course of chymotryptic digestion of the myosin heavy chain, the DTNB light chain, and the divalent metal binding site. The 19 000-dalton DTNB light chain is rapidly degraded to a 17 000-dalton fragment which comigrates with the alkali 2 light chain. The divalent metal site remains intact, despite this degradation, and the 17 000 fragment continues to protect the subfragment 1-subfragment 2 link. In the absence of divalent metal ions, the 17 000-dalton fragment is further degraded and attack of the subfragment 1 link ensues. Mn(II) bound to cardiac myosin gives an EPR spectrum basically similar to that of skeletal myosin, suggesting that their 19 000-dalton light chains are analogous with respect to their divalent metal binding sites, despite their chemical differences. The potential of EPR spectroscopy for characterizing the metal binding sites of myosin from different sources and of intact muscle fibers is discussed.  相似文献   

18.
Intersubunit fluorescence energy transfer in human factor VIII   总被引:3,自引:0,他引:3  
Human factor VIII circulates as a series of active heterodimers composed of a light chain (83 kDa) linked by divalent metal ion(s) to a variable sized heavy chain (93-210 kDa). Purified factor VIII subunits were modified with sulfhydryl-specific fluorophores. Probe selection was based upon the limited number of free cysteine residues in each subunit. Levels of probe incorporation suggested the presence of a single reactive cysteine residue per subunit. Amino-terminal sequence analysis of fluorescent tryptic peptides derived from the modified subunits indicated fluorophore attachment sites at Cys528 of the heavy chain (A2 domain) and Cys1858 of the light chain (A3 domain). Subunit reassociation was measured by fluorescence energy transfer using light chain modified with N-[1-pyrenyl] maleimide (fluorescence donor) and heavy chain modified with 7-diethylamino-3-[4'-maleimidophenyl]-4-methylcoumarin (fluorescence acceptor). Donor fluorescence quenching paralleled the formation of factor VIII clotting activity, and both effects were saturable with respect to added heavy chain. Based upon the degree of donor quenching, a distance of 20 A was calculated separating the two fluorophores. These results indicate a close spatial relationship between the A2 domain of heavy chain and the A3 domain of light chain in the factor VIII heterodimer.  相似文献   

19.
M L Pusey  G L Nelsestuen 《Biochemistry》1984,23(25):6202-6210
The interactions of factor V and factor Va light chain with phospholipid vesicles were compared. The results showed that the factor Va light chain bound with the same parameters as factor V when the proteins were present at similar densities on the membrane. The protein-vesicle collisional efficiency was 30-50% for both factor V and factor Va light chain. The factor Va light chain bound at a higher density, and the additional binding interactions had lower affinity. The dissociation process showed negative cooperativity, possibly due to competition for acidic phospholipids in the membrane. The higher molar packing density produced more rapid protein-membrane dissociation rate constants. However, when factor V and Va light chains were present at similar molar densities on the vesicle, the dissociation rates, estimated by two methods, were similar. Analysis of dissociation rates also showed that factor Va interacted with factor Xa on the membrane surface while factor Va light chain did not. Factor Va generated by thrombin digestion of factor V did not result in a major loss of membrane-bound protein mass unless ethylenenediaminetetraacetic acid was present; in the latter case the mass changes indicated that all peptides were removed from the membrane except factor Va light chain. Equilibrium and dynamic measurements showed that ionic strength had a major effect on the dissociation rate but not on the association process. The salt effect indicated interaction between oppositely charged species with the product of the number of charges equal to at least -5.5. Factor Va light chain appeared to interact with phospholipids via a general charge interaction rather than via a specific charge stoichiometry.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The conformations of the alkali light-chain subunits A1 and A2 of vertebrate fast-twitch muscle myosin have been compared for these chains both in their free state and their heavy-chain-associated states by examining the fluorescence parameters of the extrinsic probe 2-(4′-maleimidylanilino)naphthalene-6-sulfonic acid attached covalently to the two light chains. The effect of temperature, salt concentration, and ligands such as Mg2+ ions, MgADP, and MgATP has also been investigated. In spite of the extensive sequence homology between the two light chains the data indicate that in their free states the fluorophore in the A2 chain resides in a considerably higher hydrophobic environment. It was also found that the presence of the bulky fluorophore on these light chains does not adversely affect their ability to hybridize with Subfragment 1 heavy chains to form ATPase active hybrids. This association to the heavy chains is accompanied by significant changes in the quantum yields of the 2-(4′-maleimidylanilino)naphthalene-6-sulfonic acid label indicating that conformational changes do occur during this transition. Mg2+ ions were found to cause either an enhancement or a decrease in fluorescence intensity depending on whether the alkali light chains were free or combined to the heavy chains, respectively. Fluorescence perturbation by nucleotide was only observed for the heavy-chain-associated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号