首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a biologically inspired approach to the dynamic assignment and reassignment of a homogeneous swarm of robots to multiple locations, which is relevant to applications like search and rescue, environmental monitoring, and task allocation. Our work is inspired by experimental studies of ant house hunting and empirical models that predict the behavior of the colony that is faced with a choice between multiple candidate nests. We design quorum based stochastic control policies that enable the team of agents to distribute themselves among multiple candidate sites in a specified ratio, and compare our results to the linear stochastic policies described in (Halasz et al., in Proceedings of the International Conference on Intelligent Robots and Systems (IROS’07), pp. 2320–2325, 2007). We show how our quorum model consistently performs better than the linear models while minimizing computational requirements and now it can be implemented without the use of inter-agent wireless communication.  相似文献   

3.
In this paper, we present a distributed control strategy, enabling agents to converge onto and travel along a consensually selected curve among a class of closed planar curves. Individual agents identify the number of neighbors within a finite circular sensing range and obtain information from their neighbors through local communication. The information is then processed to update the control parameters and force the swarm to converge onto and circulate along the aforementioned planar curve. The proposed mathematical framework is based on stochastic differential equations driven by white Gaussian noise (diffusion processes). Using this framework, there is maximum probability that the swarm dynamics will be driven toward the consensual closed planar curve. In the simplest configuration where a circular consensual curve is obtained, we are able to derive an analytical expression that relates the radius of the circular formation to the agent’s interaction range. Such an intimate relation is also illustrated numerically for more general curves. The agent-based control strategy is then translated into a distributed Braitenberg-inspired one. The proposed robotic control strategy is then validated by numerical simulations and by implementation on an actual robotic swarm. It can be used in applications that involve large numbers of locally interacting agents, such as traffic control, deployment of communication networks in hostile environments, or environmental monitoring.  相似文献   

4.
This work proposes a control law for efficient area coverage and pop-up threat detection by a robot swarm inspired by the dynamical behavior of ant colonies foraging for food. In the first part, performance metrics that evaluate area coverage in terms of characteristics such as rate, completeness and frequency of coverage are developed. Next, the Keller–Segel model for chemotaxis is adapted to develop a virtual-pheromone-based method of area coverage. Sensitivity analyses with respect to the model parameters such as rate of pheromone diffusion, rate of pheromone evaporation, and white noise intensity then identify and establish noise intensity as the most influential parameter in the context of efficient area coverage and establish trends between these different parameters which can be generalized to other pheromone-based systems. In addition, the analyses yield optimal values for the model parameters with respect to the proposed performance metrics. A finite resolution of model parameter values were tested to determine the optimal one. In the second part of the work, the control framework is expanded to investigate the efficacy of non-Brownian search strategies characterized by Lévy flight, a non-Brownian stochastic process which takes variable path lengths from a power-law distribution. It is shown that a control law that incorporates a combination of gradient following and Lévy flight provides superior area coverage and pop-up threat detection by the swarm. The results highlight both the potential benefits of robot swarm design inspired by social insect behavior as well as the interesting possibilities suggested by considerations of non-Brownian noise.  相似文献   

5.
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans.  相似文献   

6.
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.  相似文献   

7.
We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.  相似文献   

8.
Realistic models of biological processes typically involve interacting components on multiple scales, driven by changing environment and inherent stochasticity. Such models are often analytically and numerically intractable. We revisit a dynamic maximum entropy method that combines a static maximum entropy with a quasi-stationary approximation. This allows us to reduce stochastic non-equilibrium dynamics expressed by the Fokker-Planck equation to a simpler low-dimensional deterministic dynamics, without the need to track microscopic details. Although the method has been previously applied to a few (rather complicated) applications in population genetics, our main goal here is to explain and to better understand how the method works. We demonstrate the usefulness of the method for two widely studied stochastic problems, highlighting its accuracy in capturing important macroscopic quantities even in rapidly changing non-stationary conditions. For the Ornstein-Uhlenbeck process, the method recovers the exact dynamics whilst for a stochastic island model with migration from other habitats, the approximation retains high macroscopic accuracy under a wide range of scenarios in a dynamic environment.  相似文献   

9.
We study cooperative navigation for robotic swarms in the context of a general event-servicing scenario. In the scenario, one or more events need to be serviced at specific locations by robots with the required skills. We focus on the question of how the swarm can inform its members about events, and guide robots to event locations. We propose a solution based on delay-tolerant wireless communications: by forwarding navigation information between them, robots cooperatively guide each other towards event locations. Such a collaborative approach leverages on the swarm’s intrinsic redundancy, distribution, and mobility. At the same time, the forwarding of navigation messages is the only form of cooperation that is required. This means that the robots are free in terms of their movement and location, and they can be involved in other tasks, unrelated to the navigation of the searching robot. This gives the system a high level of flexibility in terms of application scenarios, and a high degree of robustness with respect to robot failures or unexpected events. We study the algorithm in two different scenarios, both in simulation and on real robots. In the first scenario, a single searching robot needs to find a single target, while all other robots are involved in tasks of their own. In the second scenario, we study collective navigation: all robots of the swarm navigate back and forth between two targets, which is a typical scenario in swarm robotics. We show that in this case, the proposed algorithm gives rise to synergies in robot navigation, and it lets the swarm self-organize into a robust dynamic structure. The emergence of this structure improves navigation efficiency and lets the swarm find shortest paths.  相似文献   

10.
ObjectiveThe ROBADOM project was devoted to the design of a “robot butler”, capable of providing verbal and non-verbal interactions and feedbacks for assisting older adults at home. In this article we focused on the following issues: (1) study the social context for designing social robot; define the robot appearance and investigate the perceptions and attitudes of older adults towards an assistive robot; (2) examine the perception of the expressivity of the robot, the social signals showing the end-user engagement level and the role of agent embodiment during the interaction between older adults and a robot.MethodThe design of the studies involved both qualitative and experimental methods.Results & DiscussionSmall robots with some traits between human/animal and machine were appreciated by the participants. As regards services, cognitive stimulation, reminder and object localization were positively rated. Although the participants considered an assistive robot as useful, they were not yet ready to adopt it. The expressions of the robot were perceived differently in older and young adults. Thus, a robotic system dedicated to older adults should be tailored to the specific characteristics of this population. We also identified social signals as indicators of the user's engagement level during interaction. Finally, the issue of the added valued of a robotic system in comparison to a laptop was raised by our participants. Therefore, various issues (technological development, human-robot interaction, social context…) are to be explored before testing the impact of the robot at home.  相似文献   

11.
Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.  相似文献   

12.
Geographic and elevational variation in the local abundance of swarm-raiding army ants has implications for the population dynamics of their prey, as well as affecting the profitability of army-ant-following behavior for birds. Here, we analyze systematically collected data on E. burchellii and L. praedator raid rates from geographically and elevationally wide-ranging sites, from lowland to montane forests. We show that raids of each species, and of both species pooled, reach peak densities at intermediate (premontane) elevations. These patterns suggest that army ant swarm raids are relatively abundant in Neotropical montane forests. Therefore, a paucity of ant raids does not explain the absence of obligate ant-following bird species, particularly true antbirds (Thamnophilidae), from montane forests. As army ant raids are relatively common at middle elevations, opportunities exist for other montane bird taxa to exploit army ant raids as a food source.  相似文献   

13.
The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain’s division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains—but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology.  相似文献   

14.
We present a new method which allows a swarm of robots to sort arbitrarily arranged objects into homogeneous clusters. In the ideal case, a distributed robotic sorting method should establish a single homogeneous cluster for each object type. This can be achieved with existing methods, but the rate of convergence is considered too slow for real-world application. Previous research on distributed robotic sorting is typified by randomised movement with a pick-up/deposit behaviour that is a probabilistic function of local object density. We investigate whether the ability of each robot to localise and return to remembered places can improve distributed sorting performance. In our method, each robot maintains a cache point for each object type. Upon collecting an object, it returns to add this object to the cluster surrounding the cache point. Similar to previous biologically inspired work on distributed sorting, no explicit communication between robots is implemented. However, the robots can still come to a consensus on the best cache for each object type by observing clusters and comparing their sizes with remembered cache sizes. We refer to this method as cache consensus. Our results indicate that incorporating this localisation capability enables a significant improvement in the rate of convergence. We present experimental results using a realistic simulation of our targeted robotic platform. A subset of these experiments is also validated on physical robots.  相似文献   

15.
In the ant Lasius niger, the ability to ingest their own desired volume is the key criterion that rules the recruiting behaviour of scouts. This volume acts as a threshold triggering the trail-laying response of foragers. In this paper, we show that this desired volume is specific to each individual and is kept constant over successive trips to a food source. This individual specificity contrasts with the variability of all individual desired volumes within the colony. In this study, it is also shown that, among L. niger foragers, 14% never participate in the formation of the chemical pathway and never lay a trail over successive trips. Among the others foragers, interindividual differences in the persistence of trail-laying behaviour over successive trips are observed but do not rely on an individual specialisation, in which some ants would lay a trail more frequently and persistently than other scouts. We discuss how an individual in the foraging behaviour can play an essential role in the regulation of food retrieval dynamics.  相似文献   

16.
A well known problem in the design of the control system for a swarm of robots concerns the definition of suitable individual rules that result in the desired coordinated behaviour. A possible solution to this problem is given by the automatic synthesis of the individual controllers through evolutionary or learning processes. These processes offer the possibility to freely search the space of the possible solutions for a given task, under the guidance of a user-defined utility function. Nonetheless, there exist no general principles to follow in the definition of such a utility function in order to reward coordinated group behaviours. As a consequence, task dependent functions must be devised each time a new coordination problem is under study. In this paper, we propose the use of measures developed in Information Theory as task-independent, implicit utility functions. We present two experiments in which three robots are trained to produce generic coordinated behaviours. Each robot is provided with rich sensory and motor apparatus, which can be exploited to explore the environment and to communicate with other robots. We show how coordinated behaviours can be synthesised through a simple evolutionary process. The only criteria used to evaluate the performance of the robotic group is the estimate of mutual information between the motor states of the robots.  相似文献   

17.
BACKGROUND: Even on short routes, ants can be guided by multiple visual memories. We investigate here the cues controlling memory retrieval as wood ants approach a one- or two-edged landmark to collect sucrose at a point along its base. In such tasks, ants store the desired retinal position of landmark edges at several points along their route. They guide subsequent trips by retrieving the appropriate memory and moving to bring the edges in the scene toward the stored positions. RESULTS: The apparent width of the landmark turns out to be a powerful cue for retrieving the desired retinal position of a landmark edge. Two other potential cues, the landmark's apparent height and the distance that the ant walks, have little effect on memory retrieval. A simple model encapsulates these conclusions and reproduces the ants' routes in several conditions. According to this model, the ant stores a look-up table. Each entry contains the apparent width of the landmark and the desired retinal position of vertical edges. The currently perceived width provides an index for retrieving the associated stored edge positions. The model accounts for the population behavior of ants and the idiosyncratic training routes of individual ants. DISCUSSION: Our results imply binding between the edge of a shape and its width and, further, imply that assessing the width of a shape does not depend on the presence of any particular local feature, such as a landmark edge. This property makes the ant's retrieval and guidance system relatively robust to edge occlusions.  相似文献   

18.
In many network models of interacting units such as cells or insects, the coupling coefficients between units are independent of the state of the units. Here we analyze the temporal behavior of units that can switch between two 'category' states according to rules that involve category-dependent coupling coefficients. The behaviors of the category populations resulting from the asynchronous random updating of units are first classified according to the signs of the coupling coefficients using numerical simulations. They range from isolated fixed points to lines of fixed points and stochastic attractors. These behaviors are then explained analytically using iterated function systems and birth-death jump processes. The main inspiration for our work comes from studies of non-hierarchical task allocation in, e.g., harvester ant colonies where temporal fluctuations in the numbers of ants engaged in various tasks occur as circumstances require and depend on interactions between ants. We identify interaction types that produce quick recovery from perturbations to an asymptotic behavior whose characteristics are function of the coupling coefficients between ants as well as between ants and their environment. We also compute analytically the probability density of the population numbers, and show that perturbations in our model decay twice as fast as in a model with random switching dynamics. A subset of the interaction types between ants yields intrinsic stochastic asymptotic behaviors which could account for some of the experimentally observed fluctuations. Such noisy trajectories are shown to be random walks with state-dependent biases in the 'category population' phase space. With an external stimulus, the parameters of the category-switching rules become time-dependent. Depending on the growth rate of the stimulus in comparison to its population-dependent decay rate, the dynamics may qualitatively differ from the case without stimulus. Our simple two-category model provides a framework for understanding the rich variety of behaviors in network dynamics with state-dependent coupling coefficients, and especially in task allocation processes with many tasks.  相似文献   

19.
This paper deals with designing a harvesting control strategy for a predator–prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.  相似文献   

20.
In this paper, we present the design of a new structural extension for the e-puck mobile robot. The extension may be used to transform what is traditionally a swarm robotics platform into a self-reconfigurable modular robotic system. We introduce a modified version of a previously developed collective locomotion algorithm and present new experimental results across three different themes. We begin by investigating how the performance of the collective locomotion algorithm is affected by the size and shape of the robotic structures involved, examining structures containing up to nine modules. Without alteration to the underlying algorithm, we then analyse the implicit self-assembling and self-reconfiguring capabilities of the system and show that the novel use of ‘virtual sensors’ can significantly improve performance. Finally, by examining a form of environment driven self-reconfiguration, we observe the behaviour of the system in a more complex environment. We conclude that the modular e-puck extension represents a viable platform for investigating collective locomotion, self-assembly and self-reconfiguration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号